Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Flow Methodology for Highly Reproducible Bromination Reactions

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
Uniqsis FlowSyn™ - Designed for easy, safe and efficient operation.

Uniqsis has announced an application note that describes a continuous flow methodology for electrophilic bromination that offers excellent control of both temperature and mixing using a proprietary mixer chip, leading to a highly reproducible outcome.

Electrophilic bromination is a useful reaction in organic synthesis. However, when molecular bromine is used as the electrophile, under acidic conditions, it can be difficult to control both the exothermic addition and to prevent subsequent bis-bromination of the desired monobrominated product.

In application note 21 - the authors demonstrate that using a static mixer chip on a FlowSyn flow chemistry system to control both mixing and temperature - bromination becomes a titration and the reaction can be performed rapidly under elevated temperatures.

The bromination could be performed in a coil reactor however the short reaction time of 30 seconds at 70°C makes it better suited to implementation in a chip.

The authors suggest how the chip based bromination methodology could be straightforwardly scaled to 28g / hour by connecting a 5 ml HT-PTFE coil reactor in line with the mixer chip and increasing the flow rate to 13.2 ml/min.

The Uniqsis FlowSyn™ is a compact integrated continuous flow reactor system designed for easy, safe and efficient operation.

The FlowSyn™ range includes models for performing single or multiple homogeneous or heterogeneous reactions, either manually or automatically.

The range of chemistries that can be explored with Uniqsis’ integrated and modular flow chemistry systems grows ever wider and is exemplified by the growing number of applications published both in the academic press and in Uniqsis’ own application notes.

Typical examples of flow chemistry applications include hydrogenation, nitration, bromination, metalation, molecular rearrangements and synthesis of compounds suchas dihyropyridine, indole, pyrazole, quinolinone and benzimidazole.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cambridge Reactor Design and Uniqsis Announce Joint Marketing Agreement
The companies have entered into a joint marketing agreement for the Gastropod gas introduction module and the Polar Bear low temperature reactor, for flow chemistry applications.
Monday, April 18, 2011
Flow Chemistry Company Moves Ahead
Significant developments have been reported by Uniqsis to develop a new concept in flow chemistry, leading to the launch of the FlowSyn™ Continuous Flow Reactor at the end of last year.
Monday, January 14, 2008
Microreaction System Nears Launch
Uniqsis Ltd. has announced major progress towards launching FlowSyn™ later in the year.
Wednesday, August 15, 2007
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
MRSA Uses Decoys to Evade a Last-Resort Antibiotic
Researchers at Imperial College London have discovered that MRSA releases decoy molecules that allow them to escape being killed by the antibiotic.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos