Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Computer Modeling Shows Crucial Function of Water Molecules in Proteins

Published: Wednesday, July 31, 2013
Last Updated: Wednesday, July 31, 2013
Bookmark and Share
Scientists used molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom.

UChicago scientists have discovered that just 12 molecules of water cause the long post-activation recovery period required by such ion channels before they can function again.

The research has revealed a new mechanism in the function of a nearly universal biological structure that will have broad implications, ranging from fundamental biology to the design of pharmaceuticals.

“Our research clarifies the nature of this previously mysterious inactivation state. This gives us better understanding of fundamental biology and should improve the rational design of drugs, which often target the inactivated state of channels,” said Benoît Roux, professor of biochemistry and molecular biology, whose team’s findings were published online July 28 in Nature.

Potassium channels, present in the cells of virtually all living organisms, are core components in bioelectricity generation and cellular communication. Required for functions such as neural firing and muscle contraction, they serve as common targets in pharmaceutical development.

These proteins act as a gated tunnel through the cell membrane, controlling the flow of small ions into and out of cells. After being activated by an external signal, potassium channels open to allow ions through. Soon after, however, they close, entering an inactive state and are unable to respond to stimuli for 10 to up to 20 seconds.

The cause of this long recovery period, which is enormously slow by molecular standards, has remained a mystery, as structural changes in the protein are known to be almost negligible between the active and inactivated states—differing by a distance equivalent to the diameter of a single carbon atom.

To shed light on this phenomenon, Roux and his team used supercomputers to simulate the movement and behavior of every individual atom in the potassium channel and its immediate environment. After computations corresponding to millions of core-hours, the team discovered that just 12 water molecules were responsible for the slow recovery of these channels.

They found that when the potassium channel is open, water molecules quickly bind to tiny cavities within the protein structure, where they block the channel in a state that prevents the passage of ions. The water molecules are released slowly only after the external stimulus has been removed, allowing the channel to be ready for activation again. This computer simulation-based finding was then confirmed through osmolarity experiments in the laboratory.

“Observing this was a complete surprise, but it made a lot of sense in retrospect,” Roux said. “Better understanding of this ubiquitous biological system will change how people think about inactivation and recovery of these channels, and has the potential to someday impact human health.”

The work was supported by grants from the National Institutes of Health. Computation resources were provided by Oak Ridge National Laboratory, the National Resource for Biomedical Supercomputing and the Pittsburgh Supercomputing Center.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enormous Genetic Variation May Shield Tumors from Treatment
Debate over Darwinian selection vs. random mutations emerges at the tumor level.
Wednesday, November 11, 2015
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Protein Aggregation After Heat Shock Is An Organized, Reversible Response
New study finds protein aggregation after heat exposure is a reversible cellular process, not unrecoverable damage from misfolding.
Friday, September 11, 2015
New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Israel-Chicago Partnership Targets Water Resource Innovations
Partnership is to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.
Monday, June 24, 2013
Multiple Research Teams Unable to Confirm High-Profile Alzheimer’s Study
Teams of highly respected Alzheimer’s researchers failed to replicate what appeared to be breakthrough results for the treatment of this brain disease when they were published last year in the journal Science.
Friday, May 24, 2013
Gifts to Boost University of Chicago as Hub for Biomedical 'Big Data'
Two major gifts will build momentum behind the University of Chicago’s leadership in biomedical computation.
Thursday, April 18, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos