Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Research Aims to Stop ‘Blood Doping' During Cycling and Other Competitive Sports

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
As cyclists take to the roads of Surrey, England, the subject of blood doping raises its head once again.

New studies looking at how human blood changes when stored could help put an end to this illegal practice for athletes, says Carl-Johan Ivarsson, CEO, Qlucore. Researchers are using a number of complex, data-intensive studies to provide new insight into "blood doping", a practice which attempts to boost the number of red blood cells in the bloodstream in order to enhance athletic performance. This process is reputed to have been widespread in the sport of professional cycling, with recent revelations concerning the seven-time Tour de France winner Lance Armstrong. In a recent investigation undertaken by USADA (United States Anti Doping Agency) eleven of Armstrong's former team-mates have testified that Armstrong and many of the team used blood doping on a widespread basis. As has been widely publicised Armstrong has been stripped of his seven Tour de France titles.

To date, it has been extremely difficult to test whether an athlete has been involved in so-called "blood doping" - also known as induced erythrocythemia - which means that detection has often relied upon random searches of athletes' homes and team facilities for evidence of the practice, rather than any reliable scientific testing.
But how does "blood doping" work exactly? Because red blood cells carry oxygen from the lungs to the muscles, a higher proportion of these cells in the blood can help to enhance aerobic capacity, improve endurance and reduce fatigue, and therefore give athletes an edge during competition. Although oxygen is carried to the muscles by two different delivery systems, only 3% is carried in solution (plasma) and the remaining 97% is bound to haemoglobin, the principle protein found in red blood cells.
Blood doping normally begins by withdrawing between 1 to 4 units of a person's blood (1 unit = 450 ml), usually three to four weeks before a high-endurance sporting event. The blood is then centrifuged so that the plasma components can be re-infused immediately, whilst the remaining red blood cells are placed in cold storage. Red blood cells can actually survive this process quite well, as they can be frozen (and later thawed) with little loss of viability or activity.
For the blood transfusion itself, there are two possibilities. In a "homologous" transfusion, red blood cells from a compatible donor are collected, concentrated and then transfused into the athlete's circulation prior to competition. In an "autologous" transfusion, the athlete's own red blood cells are collected before competition and then re-introduced to the body up to a week before the actual event is to take place. In some studies, this process has been shown to increase the haemoglobin level and red blood cell count by up to 20%.
However, in addition to being prohibited under the World Anti-Doping Agency's (WADA) list of prohibited substances and methods, both types of transfusion can be dangerous because of the risk of infection and the potential toxicity of improperly stored blood. Homologous transfusions present the additional risks of communication of infectious diseases, blood contamination, and other adverse reactions.
Although a test for homologous blood transfusions was implemented at the 2004 Summer Olympic Games in Athens, WADA has expressed its support for research projects that aim to develop a test for autologous transfusions as well.
Scientists address the blood doping issue
In recent years, researchers have been looking at red blood cells in order to see whether any deterioration occurs when the blood is stored outside the body for a period of time.
These studies typically begin by taking a sample of fresh blood, purifying it from any contaminants, examining it, and then storing the blood for three-to-four weeks. The research team can then examine these same blood samples and compare the two groups.
However, even though studies like these are helping to determine whether certain aspects of human blood do, indeed, experience some deterioration when stored, they also produce a staggering amount of data that needs to be analysed very carefully. Fortunately, the latest software in this area is now making it possible for scientists to analyse this data with a combination of statistical methods and highly effective visualisation techniques.
Next-generation data analysis has arrived
Advanced data analysis tools can now be used to simplify highly complex data by giving it a visual form. For example, even the most complex data can now be plotted as full-colour 3D images on a computer screen, and then rotated manually or automatically, so that it can be examined by the naked eye easily. This approach has helped to open up new ways of working with data and, as a consequence, has helped biologists to be more actively involved in the analysis process.
This type of advanced software combines advanced data visualisation techniques with powerful statistical methods and filters. Different colours can make this analysis even easier, as each sub-group can be labelled with its own unique colour. As such, applications like these make it much easier for researchers to examine and analyse the data derived from their experiments, and also to check their data for any outliers by visual inspection.
This level of flexibility is important, as researchers want to be sure that their analysis isn't too restrictive. If false positives are limited too stringently, for example, the research team could be left with just a very small number of records to study. However, researchers can now use the latest data analysis software to adjust these values as necessary - and in real-time - thus making it much easier to control the number of results returned and to achieve more meaningful results.
Research in this area continues
Experiments in this area normally rely on an enormous amount of what's called "microarray data" - more than 1.5 million values - but the data visualisation and statistical capabilities provided by this new generation of software mean that scientists can analyse this information in a very short time. With this approach, researchers will be able to uncover even more interesting results, as this method can help to identify extremely small differences between different blood samples.
At the same time, new initiatives like WADA's Athlete Passport programme are making it possible to follow an athlete's biological variables over time, so that researchers can detect any abnormal variations of determined biological variables, even if no "foreign substance" has been introduced into the body. By monitoring these changes very carefully, miniscule differences in the blood can be identified very quickly.
Additional studies in this area will be of substantial benefit to athletes all across the globe, not only as a way of ensuring fairness and good sportsmanship during sporting events, but also to protect athletes from inadvertently harming themselves. As such, scientists around the world are committed to making this vision a reality by pursuing their research in this area even further.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Revealing Human-growth Patterns in Transcriptomic Data
Understanding how children grow is key to understanding many childhood diseases and conditions, particularly those affecting growth.
Monday, May 19, 2014
Fighting to Reduce Dependence on Chemical Fungicides
The research is focused on how plants defend themselves against oomycetes and fungi.
Wednesday, February 19, 2014
Qlucore, Nebion Collaborate
Partnership aims to address complementary use cases.
Friday, February 07, 2014
Using Qlucore Omics Explorer for Interpreting Leukemia Proteomics Data
Qlucore software has speeded up the process and enabled discovery for leukemia researcher Steven Kornblau.
Monday, November 18, 2013
Qlucore Receives European Funding That will Benefit Personalized Medicine
Hepatitis C patients to benefit from European funding awarded to Qlucore.
Thursday, September 05, 2013
How it Works: Advanced Data Analysis Using Visualisation
Visualisation is a powerful tool for those working in molecular biology, here Qlucore offers a five-step method to ensure repeatable and significant results.
Monday, June 24, 2013
Qlucore Receives R&D Funding
VINNOVA Grant will speed the interactivity and visual feedback of Next Generation Sequencing (NGS) data analysis for scientists.
Monday, April 29, 2013
Researchers Develop Animal Free Methods for Testing Chemical Compounds for Allergens
EU-funded research project developing in vitro (‘out of body’) test strategies to reduce or replace animal testing use gene expression analysis software.
Monday, April 08, 2013
Qlucore Targets Academic and Commercial Biotech, Life Science Markets with Novo Newton Scientific Ltd
New alliance increases Qlucore's sales and marketing presence in Ireland, Spain, Italy and South Africa.
Thursday, January 24, 2013
Visualising Complex Data Results from 100,000 Cancer Patients
For decades, biomedical scientists have tried to develop a diagnostic tool for the early stages of cancer.
Wednesday, December 12, 2012
New Biomarkers Could Offer Vital Clues for Cancer Research
European funding for cancer research has led to some interesting results in recent years, says Carl-Johan Ivarsson, CEO at Qlucore.
Friday, May 04, 2012
Unlocking the Secrets of Complex Genetic Data
A new approach to data analysis is helping researchers at Cincinnati Children's Hospital Medical Center to unravel the mysteries of human disease, says Carl-Johan Ivarsson, President of Qlucore.
Monday, March 19, 2012
New Research Techniques Could Help to Eliminate the Need for Animal Testing
Carl-Johan Ivarsson, Qlucore, comments on the reducing necessity for animal models in today’s drug development industry, as research moves more towards in vitro analysis.
Monday, March 19, 2012
NHS Urged to Prepare for ‘Genetic Revolution’
The ability to bring biologists into the data analysis phase will be key to achieving this important goal.
Monday, November 21, 2011
Qlucore to Expand its Marketing Efforts with New High-profile Appointment to its Board
New appointment coincides with the injection of new capital to increase market activities of its data analysis tool
Wednesday, November 25, 2009
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Using Drug-Susceptible Parasites to Fight Drug Resistance
Researchers at the University of Georgia have developed a model for evaluating a potential new strategy in the fight against drug-resistant diseases.
Boosting Breast Cancer Treatment
To more efficiently treat breast cancer, scientists have been researching molecules that selectively bind to cancer cells and deliver a substance that can kill the tumor cells, for several years.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
Research Finding Could Lead to Targeted Therapies for IBD
Findings published online in Cell Reports.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos