Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Turning Waste Paper to Biofuels

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
Researchers have successfully produced bioethanol from waste paper, as part of efforts to turn waste into valuable products.

To increase the sustainability of biofuels, there is currently a drive to turn away from deriving them from food crops, such as corn and sugarcane. Bioethanol derived from the waste products of agriculture and the food chain is more attractive as this avoids competition with food crops, reduces food waste and lowers the carbon footprint. Achieving this on a commercial scale needs to overcome a number of hurdles, which the Biorefinery Centre on the Norwich Research Park working on.

Sugars are the starting point for the production of bioethanol, and are readily obtainable in large quantities from food crops such as sugar beet, corn and wheat. In agri-food waste however the sugars are effectively locked away in the structure of the plant material – mostly in the form of lignocellulose. Lignocellulose gives plant cells walls their rigidity and resistance, but this makes them harder to convert into biofuels. For most agri-food waste a pre-treatment is needed to break open these structures, reducing the overall economic viability of the process.

However waste paper, particularly shredded paper that cannot be recycled, has effectively been pre-treated, with much of the lignocellulosic structure broken down.

Now researchers at IFR have for the first time produced high concentrations of bioethanol from waste paper that match the yields obtained from first generation biofuels.

Achieving this saw the team overcome a number of obstacles. Paper absorbs water and becomes difficult to mix. A specialised pilot bioreactor able to mix the material needed to be used. Adding the paper in batches also allowed digestion to occur, preventing the material from becoming too thick.

Ethanol conversion is a two-step process. Enzymes are used to break down the complex carbohydrates (saccharification) to simple sugars that yeast ferments into ethanol. Semi-simultaneous saccharification and fermentation was used. After an initial enzyme treatment, further saccharification feeds sugars into yeast fermentation simultaneously. This, along with the mixing and the batch addition of paper waste keeps the bioreactor working steadily and a final ethanol yield of 11.6% – as high as that in current commercial biofuel production and higher than any other reported yields from paper or paper pulp waste streams.

The researchers believe that there is considerable room to improve on this figure, by optimising batch addition regimes and the initial enzyme concentrations (which are low to reduce input costs). Different yeast strains may convert sugars to ethanol more efficiently, for example heat-tolerant yeasts may be better suited the exact conditions in this set-up. The researchers are working with the National Collection of Yeast Cultures, a BBSRC-supported National Capability based at IFR, to investigate this.

These initial findings relate to pilot scale experiments, and to be viable the system must work on the industrial scale. Scaling up must be economically viable, taking into account things such as the energy needed for the crucial agitation of the paper material. However, with over 12 million tonnes of paper waste being generated annually in the UK alone, there is great potential to divert this into a new sustainable source of fuel or higher value chemicals.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome-Editing Position Statement
A group of leading UK research organisations has today issued an initial joint statement in support of the continued use of CRISPR-Cas9 and other genome-editing techniques in preclinical research.
Monday, September 07, 2015
Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Drugs Used to Treat Lung Disease Work With the Body Clock
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective.
Thursday, August 14, 2014
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
UK Diet and Health Research Awarded £4M
Funding awarded to six projects investigating diet and health to enable the food and drink industry to meet the needs of UK consumers.
Wednesday, June 25, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Investment Provides Access to the World’s Most Advanced Crystallography Technology
The UK community will benefit thanks to a £5.64M investment from UK research funders.
Tuesday, June 03, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos