Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Turning Waste Paper to Biofuels

Published: Thursday, August 01, 2013
Last Updated: Thursday, August 01, 2013
Bookmark and Share
Researchers have successfully produced bioethanol from waste paper, as part of efforts to turn waste into valuable products.

To increase the sustainability of biofuels, there is currently a drive to turn away from deriving them from food crops, such as corn and sugarcane. Bioethanol derived from the waste products of agriculture and the food chain is more attractive as this avoids competition with food crops, reduces food waste and lowers the carbon footprint. Achieving this on a commercial scale needs to overcome a number of hurdles, which the Biorefinery Centre on the Norwich Research Park working on.

Sugars are the starting point for the production of bioethanol, and are readily obtainable in large quantities from food crops such as sugar beet, corn and wheat. In agri-food waste however the sugars are effectively locked away in the structure of the plant material – mostly in the form of lignocellulose. Lignocellulose gives plant cells walls their rigidity and resistance, but this makes them harder to convert into biofuels. For most agri-food waste a pre-treatment is needed to break open these structures, reducing the overall economic viability of the process.

However waste paper, particularly shredded paper that cannot be recycled, has effectively been pre-treated, with much of the lignocellulosic structure broken down.

Now researchers at IFR have for the first time produced high concentrations of bioethanol from waste paper that match the yields obtained from first generation biofuels.

Achieving this saw the team overcome a number of obstacles. Paper absorbs water and becomes difficult to mix. A specialised pilot bioreactor able to mix the material needed to be used. Adding the paper in batches also allowed digestion to occur, preventing the material from becoming too thick.

Ethanol conversion is a two-step process. Enzymes are used to break down the complex carbohydrates (saccharification) to simple sugars that yeast ferments into ethanol. Semi-simultaneous saccharification and fermentation was used. After an initial enzyme treatment, further saccharification feeds sugars into yeast fermentation simultaneously. This, along with the mixing and the batch addition of paper waste keeps the bioreactor working steadily and a final ethanol yield of 11.6% – as high as that in current commercial biofuel production and higher than any other reported yields from paper or paper pulp waste streams.

The researchers believe that there is considerable room to improve on this figure, by optimising batch addition regimes and the initial enzyme concentrations (which are low to reduce input costs). Different yeast strains may convert sugars to ethanol more efficiently, for example heat-tolerant yeasts may be better suited the exact conditions in this set-up. The researchers are working with the National Collection of Yeast Cultures, a BBSRC-supported National Capability based at IFR, to investigate this.

These initial findings relate to pilot scale experiments, and to be viable the system must work on the industrial scale. Scaling up must be economically viable, taking into account things such as the energy needed for the crucial agitation of the paper material. However, with over 12 million tonnes of paper waste being generated annually in the UK alone, there is great potential to divert this into a new sustainable source of fuel or higher value chemicals.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Technique to Beat the Food Fraudsters
Shoppers can be more confident that their burgers are the real deal following a new method of testing for meat fraud developed at the Institute of Food Research on the Norwich Research Park.
Monday, October 03, 2016
£9M Funding to Optimise UK Food Supply
Five research prjects have been awarded a portion of £9M to help increase resilience in UK food systems.
Wednesday, August 31, 2016
£4.5M Newton Fund to Tackle Antimicrobial Resistance
Six research partnerships tackling the rise of anti-microbial resistance (AMR) have been created with £4.5M investment by the UK Research Councils.
Wednesday, August 31, 2016
Major Pathogen of Barley Decoded
A team of scientists studying the fungus that causes Ramularia leaf spot have sequenced and explored its genome.
Wednesday, August 31, 2016
UK-Brazil Wheat Research Projects Awarded £4M
£4M investment from BBSRC and Embrapa has been awarded to four Brazil-UK partnerships.
Wednesday, July 27, 2016
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Wednesday, July 27, 2016
A New £81.6M Food and Health Research Centre
The Quadram Institute is the name of the new centre for food and health research to be located at the heart of the Norwich Research Park, one of Europe’s largest single-site concentrations of research in food, health and environmental sciences.
Wednesday, February 17, 2016
Genome-Editing Position Statement
A group of leading UK research organisations has today issued an initial joint statement in support of the continued use of CRISPR-Cas9 and other genome-editing techniques in preclinical research.
Monday, September 07, 2015
Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!