Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Climate Change on Pace to Occur 10 Times Faster than any Change Recorded in Past 65 Million Years

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Without intervention, this extreme pace could lead to a 5-6 degree Celsius spike in annual temperatures by the end of the century.

The planet is undergoing one of the largest changes in climate since the dinosaurs went extinct. But what might be even more troubling for humans, plants and animals is the speed of the change. Stanford climate scientists warn that the likely rate of change over the next century will be at least 10 times quicker than any climate shift in the past 65 million years.

If the trend continues at its current rapid pace, it will place significant stress on terrestrial ecosystems around the world, and many species will need to make behavioral, evolutionary or geographic adaptations to survive.

Although some of the changes the planet will experience in the next few decades are already "baked into the system," how different the climate looks at the end of the 21st century will depend largely on how humans respond.

The findings come from a review of climate research by Noah Diffenbaugh, an associate professor of environmental Earth system science, and Chris Field, a professor of biology and of environmental Earth system science and the director of the Department of Global Ecology at the Carnegie Institution. The work is part of a special report on climate change in the current issue of Science.

Diffenbaugh and Field, both senior fellows at the Stanford Woods Institute for the Environment, conducted the targeted but broad review of scientific literature on aspects of climate change that can affect ecosystems, and investigated how recent observations and projections for the next century compare to past events in Earth's history.

For instance, the planet experienced a 5 degree Celsius hike in temperature 20,000 years ago, as Earth emerged from the last ice age. This is a change comparable to the high-end of the projections for warming over the 20th and 21st centuries.

The geologic record shows that, 20,000 years ago, as the ice sheet that covered much of North America receded northward, plants and animals recolonized areas that had been under ice. As the climate continued to warm, those plants and animals moved northward, to cooler climes.

"We know from past changes that ecosystems have responded to a few degrees of global temperature change over thousands of years," said Diffenbaugh. "But the unprecedented trajectory that we're on now is forcing that change to occur over decades. That's orders of magnitude faster, and we're already seeing that some species are challenged by that rate of change."

Some of the strongest evidence for how the global climate system responds to high levels of carbon dioxide comes from paleoclimate studies. Fifty-five million years ago, carbon dioxide in the atmosphere was elevated to a level comparable to today. The Arctic Ocean did not have ice in the summer, and nearby land was warm enough to support alligators and palm trees.

"There are two key differences for ecosystems in the coming decades compared with the geologic past," Diffenbaugh said. "One is the rapid pace of modern climate change. The other is that today there are multiple human stressors that were not present 55 million years ago, such as urbanization and air and water pollution."

Record-setting heat

Diffenbaugh and Field also reviewed results from two-dozen climate models to describe possible climate outcomes from present day to the end of the century. In general, extreme weather events, such as heat waves and heavy rainfall, are expected to become more severe and more frequent.

For example, the researchers note that, with continued emissions of greenhouse gases at the high end of the scenarios, annual temperatures over North America, Europe and East Asia will increase 2-4 degrees C by 2046-2065. With that amount of warming, the hottest summer of the last 20 years is expected to occur every other year, or even more frequently.

By the end of the century, should the current emissions of greenhouse gases remain unchecked, temperatures over the northern hemisphere will tip 5-6 degrees C warmer than today's averages. In this case, the hottest summer of the last 20 years becomes the new annual norm.

"It's not easy to intuit the exact impact from annual temperatures warming by 6 C," Diffenbaugh said. "But this would present a novel climate for most land areas. Given the impacts those kinds of seasons currently have on terrestrial forests, agriculture and human health, we'll likely see substantial stress from severely hot conditions."

The scientists also projected the velocity of climate change, defined as the distance per year that species of plants and animals would need to migrate to live in annual temperatures similar to current conditions. Around the world, including much of the United States, species face needing to move toward the poles or higher in the mountains by at least one kilometer per year. Many parts of the world face much larger changes.

The human element

Some climate changes will be unavoidable, because humans have already emitted greenhouse gases into the atmosphere, and the atmosphere and oceans have already been heated.

"There is already some inertia in place," Diffenbaugh said. "If every new power plant or factory in the world produced zero emissions, we'd still see impact from the existing infrastructure, and from gases already released."

The more dramatic changes that could occur by the end of the century, however, are not written in stone. There are many human variables at play that could slow the pace and magnitude of change – or accelerate it.

Consider the 2.5 billion people who lack access to modern energy resources. This energy poverty means they lack fundamental benefits for illumination, cooking and transportation, and they're more susceptible to extreme weather disasters. Increased energy access will improve their quality of life – and in some cases their chances of survival – but will increase global energy consumption and possibly hasten warming.

Diffenbaugh said that the range of climate projections offered in the report can inform decision-makers about the risks that different levels of climate change pose for ecosystems.

"There's no question that a climate in which every summer is hotter than the hottest of the last 20 years poses real risks for ecosystems across the globe," Diffenbaugh said. "However, there are opportunities to decrease those risks, while also ensuring access to the benefits of energy consumption."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Drug Disarms Deadly C. difficile Bacteria Without Destroying Healthy Gut Flora
A drug that blocks the intestinal pathogen without killing resident, beneficial microbes may prove superior to antibiotics, currently the front-line treatment for the infection.
Friday, September 25, 2015
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Thursday, September 24, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
New Method for Producing Vital Cancer Drug
Stanford scientists produced a common cancer drug – previously only available from an endangered plant – in a common laboratory plant.
Tuesday, September 15, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos