Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Climate Change on Pace to Occur 10 Times Faster than any Change Recorded in Past 65 Million Years

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Without intervention, this extreme pace could lead to a 5-6 degree Celsius spike in annual temperatures by the end of the century.

The planet is undergoing one of the largest changes in climate since the dinosaurs went extinct. But what might be even more troubling for humans, plants and animals is the speed of the change. Stanford climate scientists warn that the likely rate of change over the next century will be at least 10 times quicker than any climate shift in the past 65 million years.

If the trend continues at its current rapid pace, it will place significant stress on terrestrial ecosystems around the world, and many species will need to make behavioral, evolutionary or geographic adaptations to survive.

Although some of the changes the planet will experience in the next few decades are already "baked into the system," how different the climate looks at the end of the 21st century will depend largely on how humans respond.

The findings come from a review of climate research by Noah Diffenbaugh, an associate professor of environmental Earth system science, and Chris Field, a professor of biology and of environmental Earth system science and the director of the Department of Global Ecology at the Carnegie Institution. The work is part of a special report on climate change in the current issue of Science.

Diffenbaugh and Field, both senior fellows at the Stanford Woods Institute for the Environment, conducted the targeted but broad review of scientific literature on aspects of climate change that can affect ecosystems, and investigated how recent observations and projections for the next century compare to past events in Earth's history.

For instance, the planet experienced a 5 degree Celsius hike in temperature 20,000 years ago, as Earth emerged from the last ice age. This is a change comparable to the high-end of the projections for warming over the 20th and 21st centuries.

The geologic record shows that, 20,000 years ago, as the ice sheet that covered much of North America receded northward, plants and animals recolonized areas that had been under ice. As the climate continued to warm, those plants and animals moved northward, to cooler climes.

"We know from past changes that ecosystems have responded to a few degrees of global temperature change over thousands of years," said Diffenbaugh. "But the unprecedented trajectory that we're on now is forcing that change to occur over decades. That's orders of magnitude faster, and we're already seeing that some species are challenged by that rate of change."

Some of the strongest evidence for how the global climate system responds to high levels of carbon dioxide comes from paleoclimate studies. Fifty-five million years ago, carbon dioxide in the atmosphere was elevated to a level comparable to today. The Arctic Ocean did not have ice in the summer, and nearby land was warm enough to support alligators and palm trees.

"There are two key differences for ecosystems in the coming decades compared with the geologic past," Diffenbaugh said. "One is the rapid pace of modern climate change. The other is that today there are multiple human stressors that were not present 55 million years ago, such as urbanization and air and water pollution."

Record-setting heat

Diffenbaugh and Field also reviewed results from two-dozen climate models to describe possible climate outcomes from present day to the end of the century. In general, extreme weather events, such as heat waves and heavy rainfall, are expected to become more severe and more frequent.

For example, the researchers note that, with continued emissions of greenhouse gases at the high end of the scenarios, annual temperatures over North America, Europe and East Asia will increase 2-4 degrees C by 2046-2065. With that amount of warming, the hottest summer of the last 20 years is expected to occur every other year, or even more frequently.

By the end of the century, should the current emissions of greenhouse gases remain unchecked, temperatures over the northern hemisphere will tip 5-6 degrees C warmer than today's averages. In this case, the hottest summer of the last 20 years becomes the new annual norm.

"It's not easy to intuit the exact impact from annual temperatures warming by 6 C," Diffenbaugh said. "But this would present a novel climate for most land areas. Given the impacts those kinds of seasons currently have on terrestrial forests, agriculture and human health, we'll likely see substantial stress from severely hot conditions."

The scientists also projected the velocity of climate change, defined as the distance per year that species of plants and animals would need to migrate to live in annual temperatures similar to current conditions. Around the world, including much of the United States, species face needing to move toward the poles or higher in the mountains by at least one kilometer per year. Many parts of the world face much larger changes.

The human element

Some climate changes will be unavoidable, because humans have already emitted greenhouse gases into the atmosphere, and the atmosphere and oceans have already been heated.

"There is already some inertia in place," Diffenbaugh said. "If every new power plant or factory in the world produced zero emissions, we'd still see impact from the existing infrastructure, and from gases already released."

The more dramatic changes that could occur by the end of the century, however, are not written in stone. There are many human variables at play that could slow the pace and magnitude of change – or accelerate it.

Consider the 2.5 billion people who lack access to modern energy resources. This energy poverty means they lack fundamental benefits for illumination, cooking and transportation, and they're more susceptible to extreme weather disasters. Increased energy access will improve their quality of life – and in some cases their chances of survival – but will increase global energy consumption and possibly hasten warming.

Diffenbaugh said that the range of climate projections offered in the report can inform decision-makers about the risks that different levels of climate change pose for ecosystems.

"There's no question that a climate in which every summer is hotter than the hottest of the last 20 years poses real risks for ecosystems across the globe," Diffenbaugh said. "However, there are opportunities to decrease those risks, while also ensuring access to the benefits of energy consumption."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
Saturday, July 23, 2016
New Treatment for Rare Blood Cancers
Drug called midostaurin showed promise in an international clinical trial led by a Stanford physician.
Wednesday, July 06, 2016
Guided Chemotherapy Missiles to Target Cancer Cells
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Tuesday, July 05, 2016
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Friday, July 01, 2016
Guided Chemotherapy Missiles
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Monday, June 20, 2016
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Monday, June 20, 2016
$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Resurrecting an Abandoned Drug
Previously discarded drug shows promise in helping human cells in a lab dish fight off two different viruses.
Wednesday, March 30, 2016
Fracking's Impact on Drinking Water Sources
A case study of a small Wyoming town reveals that practices common in the fracking industry may have widespread impacts on drinking water resources.
Wednesday, March 30, 2016
Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Weighing up the Risk of Groundwater Contamination
Faulty, shallow wells can leak oil and natural gas into underground drinking-water supplies, Stanford Professor Rob Jackson finds.
Wednesday, February 24, 2016
Blood Test Could Transform TB Diagnosis
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.
Tuesday, February 23, 2016
Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!