Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells in Urine Easy to Isolate and Have Potential for Numerous Therapies

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
Researchers have identified stem cells in urine that can be directed to become multiple cell types.

"These cells can be obtained through a simple, non-invasive low-cost approach that avoids surgical procedures," said Yuanyuan Zhang, M.D., Ph.D., assistant professor of regenerative medicine and senior researcher on the project.

Reporting online in the journal Stem Cells, the team successfully directed stem cells from urine to become bladder-type cells, such as smooth muscle and urothelial, the cells that line the bladder. But the urine-derived cells could also form bone, cartilage, fat, skeletal muscle, nerve, and endothelial cells, which line blood vessels. The multipotency of the cells suggests their use in a variety of therapies.

"These stem cells represent virtually a limitless supply of autologous cells for treating not only urology-related conditions such as kidney disease, urinary incontinence and erectile dysfunction, but could be used in other fields as well," said Zhang. "They could also potentially be used to engineer replacement bladders, urine tubes and other urologic organs."

Being able to use a patient's own stem cells for therapy is considered advantageous because they do not induce immune responses or rejection. However, because tissue-specific cells are a very small subpopulation of cells, they can be difficult to isolate from organs and tissues.

Zhang's team first identified the cells, which are a small subset of the many cells found in urine, in 2006. The current research builds on earlier studies by confirming the multipotency of the cells. In addition, the research found that unlike iPS cells or embryonic stem cells, the urine derived-stem cells do not form tumors when implanted in the body, indicating they may be safe for use in patients.

The research involved obtaining urine samples from 17 healthy individuals ranging in age from five to 75 years. Isolating the cells from urine involves minimal processing, according to the authors. Next, they evaluated the cells' ability to become multiple cell types.

Importantly, the cells differentiated into the three tissue layers (endoderm, ectoderm and mesoderm) that are a hallmark of true stem cells and also differentiated into the specific cell types mentioned earlier.

Next, the researchers placed cells that had been differentiated into smooth muscle and urothelial cells onto scaffolds made of pig intestine. When implanted in mice for one month, the cells formed multi-layer, tissue-like structures.

The urine-derived stem cells have markers of mesenchymal cells, which are adult stem cells from connective tissue such as bone marrow. They also have markers for pericytes, a subset of mesenchymal cells found in small blood vessels.

Where do the cells come from? Researchers suspect that the cells originate from the upper urinary tract, including the kidney. Female study participants who had received kidney transplants from male donors were found to have the y chromosome in their urine-derived stem cells, suggesting the kidney as the source of the cells.

"Identifying the origins of the cells will lead to a better understanding of the biology of this multipotent population of mesenchymal cells within the urinary tract system," said Zhang.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Your Immune System: On Surveillance in the War Against Cancer
Wake Forest Baptist Research looks at gene expression profiling in breast cancer.
Monday, May 13, 2013
New Electrically-Conductive Polymer Nanoparticles Can Generate Heat to Kill Colorectal Cancer Cells
Researchers at Wake Forest Baptist Medical Center have modified electrically-conductive polymers, commonly used in solar energy applications, to develop revolutionary polymer nanoparticles (PNs) for a medical application.
Friday, November 23, 2012
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Biological Link between the Gut Microbiome and Parkinson’s Disease
The findings suggest that targeting the gut microbiome may provide a new approach for diagnosing and treating Parkinson’s disease.
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Boosting Effectiveness of Asthma Therapy
A team of scientists from UCSF has developed a new treatment to dampen bronchospasm.
Improved Stability, Shelf Life of Protein Drugs
Study improves protein drug stability and extend their shelf life by tested a novel route for non-covalent protein modification.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!