Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Scientists Discover a New Type of Protein Modification that May Play a Role in Cancer and Diabetes

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
Scientists at The Scripps Research Institute (TSRI) have discovered a new type of chemical modification that affects numerous proteins within mammalian cells.

The modification appears to work as a regulator of important cellular processes including the metabolism of glucose. Further study of this modification could provide insights into the causes of diabetes, cancer and other disorders.

“It appears to be an intrinsic feedback mechanism in glucose metabolism, but I suspect that its other functions throughout the cell will prove at least as interesting when they are more fully elucidated,” said Benjamin F. Cravatt, chair of the Department of Chemical Physiology and member of the Skaggs Institute for Chemical Physiology at TSRI.

Cravatt and his postdoctoral fellow Raymond E. Moellering reported the finding in the August 2, 2013 issue of the journal Science.

In Search of New Protein Modifiers

The Cravatt laboratory has long studied the natural chemical modifications that can change the functions of proteins “on the fly,” switching their biological activities on or off or otherwise altering them. The better known of these modifications include phosphorylation, the addition of a small molecule known as a phosphate group, and acetylation, the addition of an acetyl group.

In search of new protein modifiers, Cravatt and Moellering, whose postdoctoral fellowship is sponsored in part by the Howard Hughes Medical Institute and the Damon Runyon Cancer Research Foundation, decided to investigate a small molecule known as 1,3-bisphosphoglycerate (1,3-BPG). The molecule’s chemical makeup suggested that it might readily react with some proteins to form semipermanent, function-altering modifications. 1,3-BPG is one of the main “intermediate” molecules produced during glycolysis, which is a core metabolic pathway that converts glucose to cellular fuel.

 “1,3-BPG’s intrinsic reactivity seemed odd to us, considering that it is such a central metabolite,” remembered Moellering.

Moellering’s initial test-tube experiments showed that 1,3-BPG does indeed react with certain lysine amino acids to modify GAPDH, the enzyme that mediates the production of 1,3-BPG. “That gave us the first indication that this reaction does happen, and that we should therefore start looking for it in cells,” he said.

A Role in Glucose Metabolism

After devising new methods to detect this unique lysine modification in human cell cultures, Moellering soon found it—on other glucose-metabolizing enzymes, as well as on proteins seemingly unrelated to glucose metabolism.

“With every step we took, the project became more interesting, because we were finding signs that this reaction occurs frequently in cells and in animal tissues, and in unexpected cellular locations, too,” Moellering said.

He detected the signature of the new lysine modification not only on proteins in the main volume of the cell (the cytosol), but also in the DNA-containing cell nucleus and even on the cell’s membrane compartments.

“It appears that wherever GAPDH goes within cells, it is capable of catalyzing the localized production of 1,3-BPG, which in turn reacts with nearby proteins to modify their structure and function,” said Cravatt.

Moellering found that when 1,3-BPG’s lysine modification occurs on glucose-metabolizing enzymes, it tends to inhibit their activities, causing a slowdown of central glucose processing and a consequent buildup of certain glucose metabolites in the processing pathway. Moellering and Cravatt suspect that these overabundant metabolites may end up being shunted into other cellular processes besides basic fuel-making—processes that contribute to the synthesis of new molecules and even cell proliferation.

Moellering also discovered that 1,3-BPG and the modification it makes on proteins become more prevalent as glucose levels rise. Within the context of glucose metabolism, 1,3-BPG’s modification thus seems to act as a “very old, maybe ancient feedback mechanism for regulating that central metabolic pathway,” Moellering said.

Looking Ahead

The abnormal processing of glucose within cells features in a number of major diseases including cancer and diabetes. “Cancer cells, for example, bring in as much as 20 times more glucose than non-cancerous cells of the same type,” Moellering noted. He now wants to find out whether 1,3-BPG is part of the problem in such cells. At abnormally high levels, it conceivably could help force glucose metabolism toward the runaway cell proliferation that is a hallmark of cancer.

Cravatt and Moellering also want to learn more about what 1,3-BPG’s lysine modification does in the nuclei and membrane compartments of cells, where they found evidence of it. “We suspect that it works to connect glucose metabolism to other pathways, perhaps as a kind of signaling mechanism,” said Moellering.

Already Moellering has uncovered evidence that there are enzymes that work to reverse 1,3-BPG’s modification of lysines—which underscores the likelihood that this modification represents a fundamental, dynamic mechanism in cells. “We’d like to discover which enzymes catalyze the removal of the modification,” said Cravatt, “because then, in principle, we could use inhibitors of these enzymes to control the levels of the modification and get a better understanding of its biological functions as well as the conditions under which it occurs.”

Funding for the study, “Functional Lysine Modification by an Intrinsically Reactive Primary Glycolytic Metabolite,” was provided by the National Institutes of Health (CA087660), the Skaggs Institute for Chemical Biology at TSRI and the Damon Runyon Cancer Research Foundation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Wednesday, October 07, 2015
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Monday, October 05, 2015
TSRI, UC San Diego Launch 'Virtual Cell' Project
Drawing on complementary strengths of two San Diego institutions, The Scripps Research Institute (TSRI) and the University of California, San Diego (UC San Diego) have formed a new consortium with a big mission: to map cells in space and time.
Monday, September 21, 2015
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
Friday, August 21, 2015
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
Friday, August 21, 2015
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Tuesday, August 18, 2015
Engineering Therapeutic Proteins into Antibodies
Scripps research and rockefeller scientists work on obesity therapy as proof-of-principle.
Monday, August 17, 2015
Scientists Determine How Antibiotic Gains Cancer-Killing Sulfur Atoms
In a discovery with implications for future drug design scientists have shown an unprecedented mechanism for how a natural antibiotic with antitumor properties incorporates sulfur into its molecular structure, an essential ingredient of its antitumor activity.
Friday, August 14, 2015
Chemists Report Nicotine-Chomping Bacteria May Hold Key to Anti-Smoking Therapy
A new study from scientists at The Scripps Research Institute (TSRI) explores a bacterial enzyme that might be used as a drug candidate to help people quit smoking.
Monday, August 10, 2015
Modern Alchemy
Chemists have discovered a broad and strikingly inexpensive method for synthesizing “amines,” a class of organic compounds prominent in drugs and other modern products.
Friday, May 22, 2015
TSRI Scientists Find Clues to Cancer Drug Failure
A pair of studies show how the primary protein responsible for multidrug chemotherapy resistance changes shape.
Thursday, March 05, 2015
How Immune Cells Hone Their Skills to Fight Disease
Findings from The Scripps Research Institute are a step toward longer-lasting vaccines.
Tuesday, February 03, 2015
How A Mutant Gene Can Cause Deafness
Scientists at The Scripps Research Institute (TSRI) have discovered how one gene is essential to hearing, uncovering a cause of deafness and suggesting new avenues for therapies.
Monday, November 24, 2014
TSRI Scientists Make Enzyme that Could Help Explain Origins of Life
A powerful tool for evolving new and useful molecules.
Saturday, November 01, 2014
Scripps Scientists Awarded NIH Grant for Biomarker Studies
$2.3 million grant awarded to develop new diagnostics for cancer, rheumatoid arthritis, colitis.
Tuesday, May 06, 2014
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos