Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UC Davis "Lab on a Chip" Measures Heart Disease Risk

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New test mimics artery conditions, detects inflammatory cells linked with atherosclerosis and myocardial infarction.

Using a special microchip that can perform laboratory functions, a team of cardiologists and biomedical engineers from UC Davis has identified cells linked with inflammation and varying degrees of heart disease.

The “lab on a chip,” which is based on technology used to evaluate chemicals and cell-to-cell interactions, may one day lead to a rapid test that doctors could use to better predict, treat and monitor atherosclerosis.

The study is published online in the Proceedings of the National Academy of Sciences of the United States of America.

“Our test provides a good indication of how atherosclerosis actually develops inside coronary arteries,” said Scott Simon, professor of biomedical engineering and a study co-author. “This is an exciting step in developing personalized profiles for heart disease risk.”

Cardiologists agree that inflammation plays an important role in heart disease, but knowing how inflammation affects the risk of a heart attack is a challenge – hence the phenomenon of a patient leaving the doctor’s office with a clean bill of health only to have a heart attack a week later.

“Inflammation likely accounts for aspects of heart disease that traditional indicators such as hypertension, diabetes, smoking and cholesterol don’t assess,” said Ehrin Armstrong, an interventional cardiologist and senior author of the study. “This test measures inflammation in cells of the immune system, opening up new avenues to monitor and treat cardiovascular disease.”

The investigators focused on specific white blood cells called CD14++ and CD16+ monocytes that link in the blood with triglycerides – fats that are risk factors for atherosclerosis. These monocytes become activated by “swallowing” triglycerides and expressing proteins called integrins. While integrins help protect against infection, they also make the monocytes sticky, helping them easily adhere to endothelial cells that line the inner surfaces of blood vessels and promoting plaques that clog arteries and lead to cardiac events.

The team used the “lab on a chip” to study the blood of 35 volunteers with varied levels of baseline triglycerides but who were otherwise healthy, along with the blood of 18 volunteers who each had experienced a heart attack. The small device – only a few square inches in area – forces blood to flow at a speed similar to blood in arteries over a specially treated glass slide that serves as a molecular substrate that models artery walls. The blood is then analyzed using a microscope that detects the relative levels of CD14++, CD16+ and integrins that stick to the substrate.

“Our lab-on-a-chip is unique in that it mimics the conditions in an actual artery during the early stages of atherosclerosis,” said Simon, who developed the technology used in the study.

After eating a high-fat meal to induce an inflammatory state, the blood of the healthy volunteers with varying triglyceride levels revealed that the monocytes had adhered to the chip substrate with sevenfold higher efficiency than other cells, proving that they are accurate biomarkers of inflammation. Further investigation showed that the increased monocyte adhesion was due to increased expression of a specific integrin known as CD11c, which was upregulated after the high-fat meal.

The evaluation of blood samples from patients who had experienced a heart attack showed that levels of CD14++ and CD16+ monocyte adhesion due to the integrin CD11c increased by 100 percent when compared to levels of these cells in the blood of healthy volunteers, indicating that these biomarkers increased proportionate to the level of cardiac disease.

“We can actually see how monocytes in the blood of people with different risks for atherosclerosis and heart attack – ranging from people with low to high triglyceride levels to those who had actually experienced a cardiac event – interact with this model of the artery wall,” said Armstrong. “We are coming close to observing atherosclerosis in action at a personal level.”

The lab-on-a-chip may one day be used to provide a rapid risk assessment tool that could be used in doctors’ offices. It may also be useful as a tool for further research in therapeutics.

“Interventions that target monocyte activation could reduce progression of atherosclerosis. In patients who have already had a heart attack, it is possible that such interventions could also reduce long-term injury to the heart,” said Armstrong.

The interdisciplinary team plans to carry the investigations further to refine their understanding of the cellular mechanisms of atherosclerosis. They would also like to conduct studies on larger populations over long time periods to better determine the predictive utility of the test.

Funding for the study was provided by the National Heart, Lung, and Blood Institute and with a Clinical Research Program Award from the American Heart Association.

Other study authors, all from UC Davis, are Greg Foster and Robert Michael Gower of the Department of Biomedical Engineering, and Kimber Stanhope and Peter Havel of the Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
Wednesday, June 15, 2016
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Wednesday, May 04, 2016
Fueling Infant Gut Microbes
UC Davis researchers have shown that an enzyme produced by beneficial microbes in babies’ intestines is able to harvest specific sugar compounds from human breast-milk and cow’s milk.
Monday, April 18, 2016
Reprogramming Scorpion Venom
‘Twist of nature’ neutralizes toxin.
Monday, April 18, 2016
Gene Blocking Lettuce Germination Also Regulates Flowering Time
Study finds that DOG1 gene functions by acting on certain microRNAs, and may help adapt the timing of seed dormancy and flowering to environmental conditions.
Wednesday, March 30, 2016
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Thursday, August 20, 2015
UC Davis to Establish Food Safety Center in China
Officials from the city of Zhuhai, China, and the University of California, Davis, have signed a memorandum of understanding to establish the World Food Center-China.
Monday, June 01, 2015
Nanomaterials In Sunscreens And Boats Leave Marine Life Vulnerable
Study shows that sea urchin embryos are more vulnerable to toxins when exposed to nanomaterials.
Thursday, May 14, 2015
Milk Protein Comparison Unveils Nutritional Gems For Developing Babies
The study revealed the first comprehensive macaque milk proteome and newly identified 524 human milk proteins.
Tuesday, March 17, 2015
Keck Foundation Grant Awarded to UC Davis Researcher
Grant will help fund biomedical project, "In Vivo 3D Imaging Using Bioluminescent Gene Reporters and MRI."
Monday, March 10, 2014
High Good and Low Bad Cholesterol Levels are Healthy for the Brain
Study suggests a potential new approach to lowering the prevalence of Alzheimer's disease.
Friday, January 03, 2014
Cancer Drug Unties Knots in the Chromosome that Causes Angelman and Prader-Willi Syndromes
Researchers have identified how and where in the genome a cancer chemotherapy agent acts on and ‘un-silences’ the epigenetically silenced gene that causes Angelman syndrome.
Thursday, August 08, 2013
UC Davis Helps Global Team Sequence Chickpea Genome
An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa.
Wednesday, January 30, 2013
UC Davis Receives $9.3 Million Grant for Metabolomics Center
The new center will bring together existing UC Davis service facilities in mass spectrometry, nuclear magnetic resonance and imaging.
Monday, September 10, 2012
Sequencing of 100,000 Pathogens to Help Solve Foodborne Outbreaks
New collaboration of Federal agencies with UC Davis and Agilent Technologies.
Friday, August 24, 2012
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!