Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.

The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells are the most widely used human cell lines in existence today. Access to the whole genome data of these cells will be a valuable reference tool for researchers using HeLa cells in their research.

“Just like their matriarch, the Lacks family continues to have a significant impact on medical progress by providing access to an important scientific tool that researchers will use to study the cause and effect of many diseases with the goal of developing treatments,” said NIH Director Francis S. Collins, M.D., Ph.D.

In the Nature Comment, Dr. Collins and NIH Deputy Director for Science, Outreach, and Policy Kathy L. Hudson, Ph.D., describe their collaboration with the family to develop the new policies and also examine some of the larger questions about protection of research participants in the expanding field of genomics research.

“Besides their priceless contributions to biomedical research over the past 60 years, Mrs. Lacks and her family are now serving as a catalyst for policies that advance science, build trust, and protect research participants,” said Dr. Hudson.

The understanding reached with the Lacks family respects their wishes to enable scientific progress while ensuring public acknowledgement of the enormous contribution made by the late Henrietta Lacks. In addition, the understanding gives the Lacks family a seat at the table in reviewing applications for controlled access to Henrietta Lacks’ whole genome data.

“The HeLa genome is another chapter to the never ending story of our Henrietta Lacks,” said Lacks family spokesperson and Henrietta’s granddaughter Jeri Lacks Whye. “She is a phenomenal woman who continues to amaze the world. The Lacks family is honored to be part of an important agreement that we believe will be beneficial to everyone.”

In the same issue of Nature, a team headed by Jay Shendure, M.D., Ph.D., of the University of Washington, Seattle, published a whole genome analysis of the CCL-2 strain of HeLa cells. That paper, which acknowledges the contributions of the Lacks family, pieced together the complex, rearranged genome of the HeLa cells and identified an insertion of the human papilloma virus near an oncogene that may explain the aggressiveness of Lacks’ cancer.

Circumstances Leading to the NIH Policy

Earlier this year, researchers in Germany published a scientific paper that described the first sequence of the full HeLa genome, comparing the DNA of HeLa cell lines with that of cells from healthy human tissues. That work triggered strong reactions from researchers, patient advocates, and bioethicists who were concerned it violated the privacy of the Lacks family because of the potential to identify the family’s possible disease risk. When the Lacks family expressed concern to the German researchers about what these data might reveal about their disease risk, the data were removed from public view.

“The sequencing and posting of the HeLa genome brought into sharp relief important ethical and policy issues,” said Dr. Collins. “To understand the family’s perspectives, we met with them face to face three times over four months, and listened carefully to their concerns. Ultimately, we arrived at a path forward that respects their wishes and allows science to progress. We are indebted to the Lacks family for their generosity and thoughtfulness.”

The HeLa Genome Data Use Agreement

The new controlled access policy for full genome sequence data from HeLa cells will give the Lacks family the ability to have a role in work being done with the HeLa genome sequences and track any resulting discoveries. Under the policy, biomedical researchers who agree to abide by terms set forth in the HeLa Genome Data Use Agreement will be able to apply to NIH for access to the full genome sequence data from HeLa cells. Along with representatives from the medical, scientific, and bioethics communities, two representatives of the Lacks family will serve on NIH’s newly formed, six-member working group that will review proposals for access to the HeLa full genome sequence data. In addition, NIH-funded researchers who generate full genome sequence data from HeLa cells will be expected to deposit their data into a single database for future sharing through this process. The database study page will be accessible after the embargo lifts at this url: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000640.v1.p1. Other investigators will be encouraged to respect the wishes of the family and do the same. Importantly, all researchers who use or generate full genomic data from HeLa cells will now be asked to include in their publications an acknowledgement and expression of gratitude to the Lacks family for their contributions.

Whole Genome Sequencing: Privacy, Consent and Further Reform

It is increasingly apparent that engaging the public as a partner is critical to scientific advancement. The Obama Administration is exploring fundamental reforms to human subjects protections—actions that are being driven in part by the fact that technological advances, especially in genomics and computing, have made the notion of “de-identifying” a research participant’s biological sample virtually impossible. Current policy permits the research use of specimens and generation of whole genome sequence data without the knowledge or permission of the people providing the sample, so long as, for example, the researcher cannot identify that person.

The History of HeLa Cells

Henrietta Lacks, an African-American woman who was 31 at the time of her death, was being treated for cervical cancer at Baltimore’s Johns Hopkins Hospital in 1951. Cells were extracted from the biopsy of her tumor sample for use in research without her knowledge or consent. At the time, there were no federal regulations or restrictions on the use of patients’ cells in research. Although Lacks died shortly afterwards from her aggressive disease, scientists were able to keep her cancer cells alive and replicating under laboratory conditions.

The circumstances surrounding the HeLa cell line are unique because the identities of the source of the cell line and her descendants are public and widely known. Because hers were the first human cells cultured continuously for use in research, Lacks’ identity was revealed in a scientific journal in 1971 in reference to the landmark accomplishment. Subsequently, her story was told in a BBC documentary in 1997, and in the 2010 bestselling book, “The Immortal Life of Henrietta Lacks” by Rebecca Skloot. As a result, the Lacks family has been propelled into the spotlight to an extraordinary degree.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Saturday, July 23, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
Brain Circuits Helps People Cope With Stress
Researchers at NIH have identified brain patterns in humans that appear to underlie “resilient coping,” to stress that help some people handle stressful situations better than others.
Wednesday, July 20, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Use it or Lose it: Visual Activity Regenerates Links Between Eye, Brain
The mouse study is first to show visual stimulation helps re-wire visual system and partially restores sight.
Tuesday, July 12, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
NIH-Funded Center to Study Inefficiencies in Clinical Trials
Researchers at the Duke Clinical Research Institute (DCRI) and Vanderbilt University Medical Center (VUMC) have received a major federal grant to study how multisite clinical trials of new drugs and therapies in children and adults can be conducted more rapidly and efficiently.
Thursday, July 07, 2016
NIH Funds Zika Virus Study Involving U.S. Olympic Team
Researchers will monitor potential Zika virus exposure among a subset of athletes traveling to Brazil.
Wednesday, July 06, 2016
PREVAIL Treatment Trial for Men with Persistent Ebola Viral RNA
The six-month study will enroll 60 to 120 EVD survivors.
Wednesday, July 06, 2016
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Friday, July 01, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!