Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.

The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells are the most widely used human cell lines in existence today. Access to the whole genome data of these cells will be a valuable reference tool for researchers using HeLa cells in their research.

“Just like their matriarch, the Lacks family continues to have a significant impact on medical progress by providing access to an important scientific tool that researchers will use to study the cause and effect of many diseases with the goal of developing treatments,” said NIH Director Francis S. Collins, M.D., Ph.D.

In the Nature Comment, Dr. Collins and NIH Deputy Director for Science, Outreach, and Policy Kathy L. Hudson, Ph.D., describe their collaboration with the family to develop the new policies and also examine some of the larger questions about protection of research participants in the expanding field of genomics research.

“Besides their priceless contributions to biomedical research over the past 60 years, Mrs. Lacks and her family are now serving as a catalyst for policies that advance science, build trust, and protect research participants,” said Dr. Hudson.

The understanding reached with the Lacks family respects their wishes to enable scientific progress while ensuring public acknowledgement of the enormous contribution made by the late Henrietta Lacks. In addition, the understanding gives the Lacks family a seat at the table in reviewing applications for controlled access to Henrietta Lacks’ whole genome data.

“The HeLa genome is another chapter to the never ending story of our Henrietta Lacks,” said Lacks family spokesperson and Henrietta’s granddaughter Jeri Lacks Whye. “She is a phenomenal woman who continues to amaze the world. The Lacks family is honored to be part of an important agreement that we believe will be beneficial to everyone.”

In the same issue of Nature, a team headed by Jay Shendure, M.D., Ph.D., of the University of Washington, Seattle, published a whole genome analysis of the CCL-2 strain of HeLa cells. That paper, which acknowledges the contributions of the Lacks family, pieced together the complex, rearranged genome of the HeLa cells and identified an insertion of the human papilloma virus near an oncogene that may explain the aggressiveness of Lacks’ cancer.

Circumstances Leading to the NIH Policy

Earlier this year, researchers in Germany published a scientific paper that described the first sequence of the full HeLa genome, comparing the DNA of HeLa cell lines with that of cells from healthy human tissues. That work triggered strong reactions from researchers, patient advocates, and bioethicists who were concerned it violated the privacy of the Lacks family because of the potential to identify the family’s possible disease risk. When the Lacks family expressed concern to the German researchers about what these data might reveal about their disease risk, the data were removed from public view.

“The sequencing and posting of the HeLa genome brought into sharp relief important ethical and policy issues,” said Dr. Collins. “To understand the family’s perspectives, we met with them face to face three times over four months, and listened carefully to their concerns. Ultimately, we arrived at a path forward that respects their wishes and allows science to progress. We are indebted to the Lacks family for their generosity and thoughtfulness.”

The HeLa Genome Data Use Agreement

The new controlled access policy for full genome sequence data from HeLa cells will give the Lacks family the ability to have a role in work being done with the HeLa genome sequences and track any resulting discoveries. Under the policy, biomedical researchers who agree to abide by terms set forth in the HeLa Genome Data Use Agreement will be able to apply to NIH for access to the full genome sequence data from HeLa cells. Along with representatives from the medical, scientific, and bioethics communities, two representatives of the Lacks family will serve on NIH’s newly formed, six-member working group that will review proposals for access to the HeLa full genome sequence data. In addition, NIH-funded researchers who generate full genome sequence data from HeLa cells will be expected to deposit their data into a single database for future sharing through this process. The database study page will be accessible after the embargo lifts at this url: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000640.v1.p1. Other investigators will be encouraged to respect the wishes of the family and do the same. Importantly, all researchers who use or generate full genomic data from HeLa cells will now be asked to include in their publications an acknowledgement and expression of gratitude to the Lacks family for their contributions.

Whole Genome Sequencing: Privacy, Consent and Further Reform

It is increasingly apparent that engaging the public as a partner is critical to scientific advancement. The Obama Administration is exploring fundamental reforms to human subjects protections—actions that are being driven in part by the fact that technological advances, especially in genomics and computing, have made the notion of “de-identifying” a research participant’s biological sample virtually impossible. Current policy permits the research use of specimens and generation of whole genome sequence data without the knowledge or permission of the people providing the sample, so long as, for example, the researcher cannot identify that person.

The History of HeLa Cells

Henrietta Lacks, an African-American woman who was 31 at the time of her death, was being treated for cervical cancer at Baltimore’s Johns Hopkins Hospital in 1951. Cells were extracted from the biopsy of her tumor sample for use in research without her knowledge or consent. At the time, there were no federal regulations or restrictions on the use of patients’ cells in research. Although Lacks died shortly afterwards from her aggressive disease, scientists were able to keep her cancer cells alive and replicating under laboratory conditions.

The circumstances surrounding the HeLa cell line are unique because the identities of the source of the cell line and her descendants are public and widely known. Because hers were the first human cells cultured continuously for use in research, Lacks’ identity was revealed in a scientific journal in 1971 in reference to the landmark accomplishment. Subsequently, her story was told in a BBC documentary in 1997, and in the 2010 bestselling book, “The Immortal Life of Henrietta Lacks” by Rebecca Skloot. As a result, the Lacks family has been propelled into the spotlight to an extraordinary degree.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
Scientific News
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
The Spice of Life
Scientists discover important genetic source of human diversity.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!