Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.

The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells are the most widely used human cell lines in existence today. Access to the whole genome data of these cells will be a valuable reference tool for researchers using HeLa cells in their research.

“Just like their matriarch, the Lacks family continues to have a significant impact on medical progress by providing access to an important scientific tool that researchers will use to study the cause and effect of many diseases with the goal of developing treatments,” said NIH Director Francis S. Collins, M.D., Ph.D.

In the Nature Comment, Dr. Collins and NIH Deputy Director for Science, Outreach, and Policy Kathy L. Hudson, Ph.D., describe their collaboration with the family to develop the new policies and also examine some of the larger questions about protection of research participants in the expanding field of genomics research.

“Besides their priceless contributions to biomedical research over the past 60 years, Mrs. Lacks and her family are now serving as a catalyst for policies that advance science, build trust, and protect research participants,” said Dr. Hudson.

The understanding reached with the Lacks family respects their wishes to enable scientific progress while ensuring public acknowledgement of the enormous contribution made by the late Henrietta Lacks. In addition, the understanding gives the Lacks family a seat at the table in reviewing applications for controlled access to Henrietta Lacks’ whole genome data.

“The HeLa genome is another chapter to the never ending story of our Henrietta Lacks,” said Lacks family spokesperson and Henrietta’s granddaughter Jeri Lacks Whye. “She is a phenomenal woman who continues to amaze the world. The Lacks family is honored to be part of an important agreement that we believe will be beneficial to everyone.”

In the same issue of Nature, a team headed by Jay Shendure, M.D., Ph.D., of the University of Washington, Seattle, published a whole genome analysis of the CCL-2 strain of HeLa cells. That paper, which acknowledges the contributions of the Lacks family, pieced together the complex, rearranged genome of the HeLa cells and identified an insertion of the human papilloma virus near an oncogene that may explain the aggressiveness of Lacks’ cancer.

Circumstances Leading to the NIH Policy

Earlier this year, researchers in Germany published a scientific paper that described the first sequence of the full HeLa genome, comparing the DNA of HeLa cell lines with that of cells from healthy human tissues. That work triggered strong reactions from researchers, patient advocates, and bioethicists who were concerned it violated the privacy of the Lacks family because of the potential to identify the family’s possible disease risk. When the Lacks family expressed concern to the German researchers about what these data might reveal about their disease risk, the data were removed from public view.

“The sequencing and posting of the HeLa genome brought into sharp relief important ethical and policy issues,” said Dr. Collins. “To understand the family’s perspectives, we met with them face to face three times over four months, and listened carefully to their concerns. Ultimately, we arrived at a path forward that respects their wishes and allows science to progress. We are indebted to the Lacks family for their generosity and thoughtfulness.”

The HeLa Genome Data Use Agreement

The new controlled access policy for full genome sequence data from HeLa cells will give the Lacks family the ability to have a role in work being done with the HeLa genome sequences and track any resulting discoveries. Under the policy, biomedical researchers who agree to abide by terms set forth in the HeLa Genome Data Use Agreement will be able to apply to NIH for access to the full genome sequence data from HeLa cells. Along with representatives from the medical, scientific, and bioethics communities, two representatives of the Lacks family will serve on NIH’s newly formed, six-member working group that will review proposals for access to the HeLa full genome sequence data. In addition, NIH-funded researchers who generate full genome sequence data from HeLa cells will be expected to deposit their data into a single database for future sharing through this process. The database study page will be accessible after the embargo lifts at this url: Other investigators will be encouraged to respect the wishes of the family and do the same. Importantly, all researchers who use or generate full genomic data from HeLa cells will now be asked to include in their publications an acknowledgement and expression of gratitude to the Lacks family for their contributions.

Whole Genome Sequencing: Privacy, Consent and Further Reform

It is increasingly apparent that engaging the public as a partner is critical to scientific advancement. The Obama Administration is exploring fundamental reforms to human subjects protections—actions that are being driven in part by the fact that technological advances, especially in genomics and computing, have made the notion of “de-identifying” a research participant’s biological sample virtually impossible. Current policy permits the research use of specimens and generation of whole genome sequence data without the knowledge or permission of the people providing the sample, so long as, for example, the researcher cannot identify that person.

The History of HeLa Cells

Henrietta Lacks, an African-American woman who was 31 at the time of her death, was being treated for cervical cancer at Baltimore’s Johns Hopkins Hospital in 1951. Cells were extracted from the biopsy of her tumor sample for use in research without her knowledge or consent. At the time, there were no federal regulations or restrictions on the use of patients’ cells in research. Although Lacks died shortly afterwards from her aggressive disease, scientists were able to keep her cancer cells alive and replicating under laboratory conditions.

The circumstances surrounding the HeLa cell line are unique because the identities of the source of the cell line and her descendants are public and widely known. Because hers were the first human cells cultured continuously for use in research, Lacks’ identity was revealed in a scientific journal in 1971 in reference to the landmark accomplishment. Subsequently, her story was told in a BBC documentary in 1997, and in the 2010 bestselling book, “The Immortal Life of Henrietta Lacks” by Rebecca Skloot. As a result, the Lacks family has been propelled into the spotlight to an extraordinary degree.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos