Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.

The National Institutes of Health today announced in Nature that it has reached an understanding with the family of the late Henrietta Lacks to allow biomedical researchers controlled access to the whole genome data of cells derived from her tumor, commonly known as HeLa cells. These cells have already been used extensively in scientific research and have helped make possible some of the most important medical advances of the past 60 years. These include the development of modern vaccines, cancer treatments, in vitro fertilization techniques, and many others. HeLa cells are the most widely used human cell lines in existence today. Access to the whole genome data of these cells will be a valuable reference tool for researchers using HeLa cells in their research.

“Just like their matriarch, the Lacks family continues to have a significant impact on medical progress by providing access to an important scientific tool that researchers will use to study the cause and effect of many diseases with the goal of developing treatments,” said NIH Director Francis S. Collins, M.D., Ph.D.

In the Nature Comment, Dr. Collins and NIH Deputy Director for Science, Outreach, and Policy Kathy L. Hudson, Ph.D., describe their collaboration with the family to develop the new policies and also examine some of the larger questions about protection of research participants in the expanding field of genomics research.

“Besides their priceless contributions to biomedical research over the past 60 years, Mrs. Lacks and her family are now serving as a catalyst for policies that advance science, build trust, and protect research participants,” said Dr. Hudson.

The understanding reached with the Lacks family respects their wishes to enable scientific progress while ensuring public acknowledgement of the enormous contribution made by the late Henrietta Lacks. In addition, the understanding gives the Lacks family a seat at the table in reviewing applications for controlled access to Henrietta Lacks’ whole genome data.

“The HeLa genome is another chapter to the never ending story of our Henrietta Lacks,” said Lacks family spokesperson and Henrietta’s granddaughter Jeri Lacks Whye. “She is a phenomenal woman who continues to amaze the world. The Lacks family is honored to be part of an important agreement that we believe will be beneficial to everyone.”

In the same issue of Nature, a team headed by Jay Shendure, M.D., Ph.D., of the University of Washington, Seattle, published a whole genome analysis of the CCL-2 strain of HeLa cells. That paper, which acknowledges the contributions of the Lacks family, pieced together the complex, rearranged genome of the HeLa cells and identified an insertion of the human papilloma virus near an oncogene that may explain the aggressiveness of Lacks’ cancer.

Circumstances Leading to the NIH Policy

Earlier this year, researchers in Germany published a scientific paper that described the first sequence of the full HeLa genome, comparing the DNA of HeLa cell lines with that of cells from healthy human tissues. That work triggered strong reactions from researchers, patient advocates, and bioethicists who were concerned it violated the privacy of the Lacks family because of the potential to identify the family’s possible disease risk. When the Lacks family expressed concern to the German researchers about what these data might reveal about their disease risk, the data were removed from public view.

“The sequencing and posting of the HeLa genome brought into sharp relief important ethical and policy issues,” said Dr. Collins. “To understand the family’s perspectives, we met with them face to face three times over four months, and listened carefully to their concerns. Ultimately, we arrived at a path forward that respects their wishes and allows science to progress. We are indebted to the Lacks family for their generosity and thoughtfulness.”

The HeLa Genome Data Use Agreement

The new controlled access policy for full genome sequence data from HeLa cells will give the Lacks family the ability to have a role in work being done with the HeLa genome sequences and track any resulting discoveries. Under the policy, biomedical researchers who agree to abide by terms set forth in the HeLa Genome Data Use Agreement will be able to apply to NIH for access to the full genome sequence data from HeLa cells. Along with representatives from the medical, scientific, and bioethics communities, two representatives of the Lacks family will serve on NIH’s newly formed, six-member working group that will review proposals for access to the HeLa full genome sequence data. In addition, NIH-funded researchers who generate full genome sequence data from HeLa cells will be expected to deposit their data into a single database for future sharing through this process. The database study page will be accessible after the embargo lifts at this url: http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000640.v1.p1. Other investigators will be encouraged to respect the wishes of the family and do the same. Importantly, all researchers who use or generate full genomic data from HeLa cells will now be asked to include in their publications an acknowledgement and expression of gratitude to the Lacks family for their contributions.

Whole Genome Sequencing: Privacy, Consent and Further Reform

It is increasingly apparent that engaging the public as a partner is critical to scientific advancement. The Obama Administration is exploring fundamental reforms to human subjects protections—actions that are being driven in part by the fact that technological advances, especially in genomics and computing, have made the notion of “de-identifying” a research participant’s biological sample virtually impossible. Current policy permits the research use of specimens and generation of whole genome sequence data without the knowledge or permission of the people providing the sample, so long as, for example, the researcher cannot identify that person.

The History of HeLa Cells

Henrietta Lacks, an African-American woman who was 31 at the time of her death, was being treated for cervical cancer at Baltimore’s Johns Hopkins Hospital in 1951. Cells were extracted from the biopsy of her tumor sample for use in research without her knowledge or consent. At the time, there were no federal regulations or restrictions on the use of patients’ cells in research. Although Lacks died shortly afterwards from her aggressive disease, scientists were able to keep her cancer cells alive and replicating under laboratory conditions.

The circumstances surrounding the HeLa cell line are unique because the identities of the source of the cell line and her descendants are public and widely known. Because hers were the first human cells cultured continuously for use in research, Lacks’ identity was revealed in a scientific journal in 1971 in reference to the landmark accomplishment. Subsequently, her story was told in a BBC documentary in 1997, and in the 2010 bestselling book, “The Immortal Life of Henrietta Lacks” by Rebecca Skloot. As a result, the Lacks family has been propelled into the spotlight to an extraordinary degree.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Wednesday, April 13, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!