Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Genomic and Computational Tools Provide Window to Distant Past

Published: Friday, August 09, 2013
Last Updated: Friday, August 09, 2013
Bookmark and Share
Researcher studies gene differences in humans and other species to better understand timeline of genetic changes.

Out of the estimated 23,000 or more genes in the human genome, about 100 of them will differ--they will be present or not--between any two individuals. Genes lost or gained over time result from evolution and adaptation, as species respond through the years to their environment and other influences.

The availability of genomic sequences now allows scientists to study the presence or absence of whole genes among individuals and between species, and the impact of such changes for evolution.

Some individuals, for example, have a sharper sense of smell than others because they have more copies of olfactory receptor genes, which allow them to detect a wider range of odors. Others, especially those who live in societies with starchy diets, have more copies of the gene responsible for producing amylase, an enzyme in saliva that breaks down starch.

"There have been lots of changes, and we want to know which ones might have been involved in human adaptation," says Matthew Hahn, an associate professor of biology and informatics at Indiana University at Bloomington. "The comparison of whole genomes has revealed large and frequent changes in the size of gene families. Comparative genomic analyses allow us to identify large-scale patterns of change in gene families, and to make inferences regarding the role of natural selection in gene gain and loss."

Using computer models and available genomic data, Hahn studies the differences in genes among humans and other species, and compares them, in order to better understand the timeline of genetic changes and adaptation throughout our history. By developing computational and statistical tools to analyze whole genomes, Hahn and his team are learning new things about the evolution of gene regulation and gene families, human genomic history, and the evolution of phenotypically important genes.

"We can't go back in time, but we can use current species to get a pretty good estimate of what the ancestors looked like, and to get some ideas of what changes occurred and the order of these changes," he says.

The scientists are examining all the genes in the genome, and focusing on differences among species, such as chimpanzees and other primates compared to humans. "There's a 6 percent difference between humans and chimps in the genes they have," he says. "In the end, after 6 million years of being separate, we don't have exactly the same set of genes as chimps. How and when did those differences occur?"

Hahn is conducting his research under a National Science Foundation (NSF) Faculty Early Career Development (CAREER) award, which he received in 2009 as part of NSF's American Recovery and Reinvestment Act funding. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education, and research within the context of the mission of their organization. He is receiving about $1 million over five years.

The work could have wide-ranging applications in diagnosing and treating diseases, since many illnesses and conditions arise from genetic mutations, including the duplication or loss of important genes.

"There is a lot of interest in trying to associate these changes to human diseases," Hahn says. "There are diseases that are caused when you lose or even gain a gene, not just affecting smell or the ability to digest starch. A lot of the genes that differ in copy number are genes involved in our immune response, and these are obvious candidates for the genetic changes underlying differences in disease susceptibility among individuals. By understanding normal variation in gene copy-number, we hope to be able to better recognize changes that may be detrimental to human health."

The researchers often start by examining the differences in the number of copies of different genes among individual humans.

"The 1,000 Genomes Project (an international research effort, launched in 2008, to establish the most detailed catalogue of human genetic variation) has allowed us to study the full genetic complement of genes in a wide variety of human populations, from all of the inhabited continents," he says. "We find differences between individuals within populations and among populations, largely recapitulating the known relationships among humans.

"But we also find population-specific changes in genes that have allowed us to adapt to our surroundings," he adds. "These changes have involved both the adaptive gain and adaptive loss of genes, and are associated with important phenotypic differences among individuals."

To understand the differences shared among all humans, and that distinguish us from our ancestors, the researchers then compare the full complement of genes to those of other primates, including chimpanzees, orangutans, macaques and marmosets.

"These comparisons, and similar ones to other new genomes that are being sequenced all the time, allow us to make strong inferences about what our common ancestral genome looked like, and, therefore, the changes that have occurred along the human lineage," he says.

Such genetic changes are highly likely to have been involved in human-specific adaptations, for example, humans' increased cranium size, according to Hahn.

"Having these genomic and computational tools gives us a window into the distant past that we otherwise would not have had," he says.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blueprint for the Affordable Genome
Stampede supercomputer powers innovations in DNA sequencing technologies.
Friday, June 27, 2014
Tailoring Disease Screening Programs to Individuals
To address the current one size fits all approach a NSF-funded scientist has developed a computer algorithm that will allow women to reach a decision customized for them.
Friday, March 21, 2014
'Smuggling' Drugs at the Cellular Level
Drexel researchers use ultrasound to deliver customized medication through the skin.
Wednesday, December 11, 2013
Identifying the Pathway that Leads to Cells Forming into an Individual Body
By studying how genes influence cells to migrate and mutate, scientist hopes findings will lead to improved cancer treatments.
Wednesday, December 11, 2013
Nanogrid, Activated by Sunlight, Breaks Down Pollutants in Water
Oil spills do untold damage to the environment, the waters they pollute and to marine and other wildlife.
Monday, November 11, 2013
One Day, we May Fill the Tank with Fungi Fuel!
Plant fungi and bacteria called "endophytes" fueling breakthroughs in energy, medicine and more.
Wednesday, September 25, 2013
Understanding how our Genes Help us Develop
Humans and fruit flies have similar Hox genes, which are master regulators of embryonic development.
Monday, September 16, 2013
US and UK Scientists Collaborate to Design Crops of the Future
Three Ideas Lab projects and a fourth NSF-sponsored project aim to transform future farming while reducing pollution and energy consumption.
Thursday, August 22, 2013
Cactus "Flesh" Cleans Up Toxic Water
Prickly pear cacti may be natural, cheaper answer to water cleanup.
Tuesday, August 13, 2013
Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue
Gene transfer may play role in cancer, other diseases linked with DNA damage.
Thursday, June 27, 2013
GWC Technologies Awarded NSF Grant to Develop novel Protein Microarray Products
Grant accelerates development of the company’s Carbon-on-Metal technology for protein array analysis.
Friday, July 03, 2009
NSF Awards $14M to Advance Plant Genomic Research
Resources to be developed include genomic sequences, genetic markers, maps and expressed sequence collections.
Thursday, January 11, 2007
Nanoethics Researchers Awarded $250,000 from National Science Foundation
Three-year project to study ethics of human enhancement and nanotechnology.
Tuesday, September 26, 2006
NSF Awards $145,924 Grant to Williams College
The project will establish a laboratory at Williams for the collection of DNA sequence and genotype data.
Monday, November 21, 2005
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos