Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

AmpliPhi Presents Data on Bacteriophages in the Treatment of Lung Infections in CF

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
Data presented at the 20th Biennial Evergreen International Phage Meeting, 4-9 August 2013, Evergreen State College, Olympia, WA, USA.

AmpliPhi BioSciences Corp. has presented data relating to the use of bacteriophages in the treatment of Pseudomonas aeruginosa (P. aeruginosa) at the 20th Biennial Evergreen International Phage Meeting held in Olympia, Washington, USA. P. aeruginosa is the major cause of lung infections in cystic fibrosis (CF) patients.

The presentation by Sandra Morales, Head of Research at AmpliPhi, entitled “Phage therapy for the treatment of P. aeruginosa lung infections in Cystic Fibrosis patients”, summarized data from three related studies demonstrating the potential for AmpliPhi’s proprietary bacteriophage mixes in the management of lung infection in CF patients.

“Taken together, these data present a compelling case for the potential of bacteriophages to treat P. aeruginosa infections in CF where the existence of biofilms and multi-drug resistant bacteria are a growing problem,” said Ms. Morales, who is based at AmpliPhi’s facility in Sydney, Australia.

“Biofilms are a major element in infection of the CF lung. Once a biofilm has formed, antibiotics are far less effective. Biofilms are a major line of defence for bacteria, contributing to antibiotic resistance. Bacteriophages are able to penetrate biofilms and replicate locally to high levels, to produce strong local therapeutic effects. Biofilm degradation by bacteriophages kills bacteria and could also potentially restore the efficacy of antibiotics” she added.

The first data set, based on results presented at the 2012 European Congress of Clinical Microbiology and Infectious Diseases conference, showed, in an in vitro model which resembled the environment in the CF lung, that bacteriophages can infect both mucoid and non-mucoid P. aeruginosa strains isolated from CF lungs, whether or not they were antibiotic resistant.

The second study, conducted in collaboration with the Pasteur Institute in Paris, examined a proprietary anti-Pseudomonas bacteriophage mix in the treatment of a murine model of acute lung infection.

The bacteriophage mix was shown to be as effective as a known high dose of antibiotic but also appeared to be more effective and faster at preventing the dissemination of the bacteria to lung and oropharynx. This data was presented initially at the 26th Annual North American Cystic Fibrosis Association Conference in 2012.

The third study presented research conducted in collaboration with the Brompton Hospital, London (see - Thorax 2012; 67: A50-A51 http://thorax.bmj.com/content/67/Suppl_2/A50.3) examining the effectiveness of a bacteriophage mix treatment in a murine model to both clear P. aeruginosa infection and limit inflammation.

The results demonstrated that the use of bacteriophage helps eliminate the infection earlier, which in consequence results in a lower inflammatory response.

“Our pre-clinical results to date are encouraging. There is a real need for novel therapies to treat bacterial lung infections. Phage mixes targeted at P. aeruginosa have the potential to be used as alternatives or adjuncts to conventional antibiotics. If the synergistic efficacy can be established, bacteriophage-based therapy will be of special importance to cystic fibrosis patients because P. aeruginosa is the most common bacteria that affects the lungs of a CF patient” said Philip J Young, CEO of AmpliPhi, who was also attending the conference.

“Examples of bacteriophage demonstrating clinical efficacy when used in regulated clinical trials are very limited. There is a real need to identify and test improved bacteriophages mixes in controlled clinical trials. We believe our preclinical data is supportive of this move as we plan to initiate clinical trials in 2014” he added.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

AmpliPhi Announces the Appointment of Baxter Phillips
Industry leader brings broad strategic and licensing experience in development and commercial stage biopharmaceutical companies.
Thursday, November 14, 2013
AmpliPhi Signs Exclusive License With University of Leicester, UK
Collaboration and license agreement to develop bacteriophage therapies targeting Clostridium difficile.
Friday, October 18, 2013
AmpliPhi Establishes Collaboration with Intrexon
Combined expertise to create new generation of bacteriophage-based therapeutics for antibiotic resistant infections.
Thursday, April 18, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!