Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Why Tumors Become Drug-Resistant

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
New findings could lead to drugs that fight back when tumors don’t respond to treatment.

Cancer drugs known as ErbB inhibitors have shown great success in treating many patients with lung, breast, colon and other types of cancer. However, ErbB drug resistance means that many other patients do not respond, and even among those who do, tumors commonly come back.

A new study from MIT reveals that much of this resistance develops because a protein called AXL helps cancer cells to circumvent the effects of ErbB inhibitors, allowing them to grow unchecked. The findings suggest that combining drugs that target AXL and ErbB receptors could offer a better way to fight tumors, says Doug Lauffenburger, the Ford Professor of Bioengineering, head of MIT’s Department of Biological Engineering and an affiliate member of MIT’s Koch Institute for Integrative Cancer Research.

“Drug resistance is the major challenge in cancer these days. People are coming up with a lot of targeted therapies for particular genes and identifying drugs that work against them, but resistance is just invariably the issue,” says Lauffenburger, the senior author of a paper describing the findings in the Aug. 6 issue of Science Signaling.

ErbBs, a family of epithelial growth factor receptors (EGFRs), are proteins that are often overactive in cancer cells, causing them to grow and divide uncontrollably. The drug Iressa is used to treat lung cancer patients whose tumors overexpress one type of ErbB mutant, and Herceptin targets another ErbB family member that is found in certain types of breast cancer.

“There are a lot of excellent drugs that target EGFR itself or other members of that family, yet they have these limitations,” Lauffenburger says.

Systems analysis

In the new study, Lauffenburger and colleagues set out to identify factors that help tumor cells become resistant to EGFR and other ErbB inhibitors. To do this, they developed a new computer model and applied it to a large dataset called the Cancer Cell Line Encyclopedia, which includes information on about 1,000 human cancer lines and their responses to different drugs.

Led by biological engineering graduate student Aaron Meyer, lead author of the paper, the researchers created a machine learning program that can sift through the data and look for pairs of overexpressed proteins that make tumor cells resistant to EGFR inhibitors. In this case, they searched for the EGFR protein in combination with every other possible protein in the database, one pair at a time.

Through this analysis, the researchers found that EGFR paired with the AXL receptor appears to be the strongest marker for EGFR inhibitor resistance. They found this pattern across many types of cancer, including lung, breast and pancreatic.

A few previous studies have shown that overexpression of AXL is associated with resistance to EGFR inhibitors in a particular tumor, but this is the first systematic study to demonstrate the correlation, Lauffenburger says. This “systems biology” approach, which focuses on complex interactions within biological systems, is critical for finding new drugs that work together to knock out cancer’s defense mechanisms, he says.

“It’s now well known that when you look for a single pathway, you won’t get to an effective therapeutic. You will end up with resistance,” Lauffenburger says. “You’ve got to look at pathways in combination, you’ve got to look at whole interacting networks. That’s the only way.”

Clues to a mystery

Then, in experiments on cancer cells grown in the lab, the researchers found that the AXL protein tends to cluster with EGFR on cell surfaces, so when EGFR is activated, AXL also becomes active. AXL then not only stimulates further much of the same cellular machinery targeted by EGFR, but also additional pathways provoking cell growth and division. AXL also helps cells become more motile, allowing cancer to spread through the body.

The researchers also showed that other members of the ErbB family beyond EGFR similarly cluster with AXL. This suggests that AXL inhibition may also be effective for treating breast cancers dependent on ErbB2 or ovarian cancers that overexpress ErbB3, Lauffenburger says.

The study sheds light on the complicated interactions between EGFR and other proteins that help tumors re-emerge after initial treatment with EGFR inhibitors, and could help researchers develop improved treatments, says Trever Bivona, an assistant professor of medicine at the University of California at San Francisco.

“The implication that emerges from the findings is that the way receptor kinases interact to undermine sensitivity to treatment is quite complex,” says Bivona, who was not part of the research team.

High levels of AXL have previously been found in triple-negative breast cancer cells, which lack the three most common breast cancer markers — estrogen receptors, progesterone receptors and HER2 receptors. The new finding may explain why EGFR inhibitors fail to work on these tumors even though they have high EGFR levels, Lauffenburger says.

“Triple-negative breast cancer cells were a special interest of ours mainly because it’s always been such a mystery why they have not responded to EGFR inhibitors,” he says.

The new study suggests that AXL inhibitors, either alone or in combination with EGFR inhibitors, might be an effective treatment for triple-negative breast cancer, which is now treated with chemotherapy drugs that have severe side effects. A handful of clinical trials are currently testing AXL inhibitors against different types of cancer, and Lauffenburger is now planning studies in mice to investigate the effects of combining AXL and EGFR pathway inhibitors.

Biological engineering graduate student Miles Miller and Frank Gertler, a professor of biology and member of the Koch Institute, are also co-authors of the paper. The research was funded by the National Cancer Institute Integrative Cancer Biology Program, the Department of Defense Breast Cancer Research Program, and the Koch Institute Frontier Research Program.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Friday, January 29, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!