Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

A Worm's-Eye View of Immunity

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Biology professor Dennis Kim seeks to understand the physiology and evolution of host-microbe interactions by studying a simple worm.

In 1998, scientists published the first complete genome of a multicellular organism — the worm Caenorhabditis elegans. At the same time, new technologies were emerging to help researchers manipulate genes and learn more about their functions.

Around that time, Dennis Kim was looking for a new research project to do during his upcoming postdoctoral fellowship at Massachusetts General Hospital (MGH). He decided to try to take advantage of the new genetic tools for studying C. elegans. In particular, he wanted to delve into what’s called the “innate immune system” — the first line of defense against invaders such as viruses and bacteria.

“It was a jump into a new area for me. We had no idea what we would find,” says Kim, who is now an associate professor of biology at MIT. “By studying worms we can take a much more basic evolutionary perspective on the function of the innate immune system. We think we can learn very basic principles in a simpler host organism and also gain some perspective on the evolution of the mammalian system as well.”

The innate, or nonspecific, immune system evolved very early on in primitive animals including worms and fruit flies. Vertebrate animals, which evolved later, also have a specific immune system, which targets pathogens very precisely with antibodies, killer T cells and other cells.

In vertebrates, the innate immune system identifies pathogens and serves as an early alert system, mobilizing the immune system to launch a more specific reaction. In worms, the innate system is the only defense.

In Kim’s studies of the C. elegans immune system, he chose to investigate how the worm defends itself against Pseudomonas aeruginosa, a bacterium that commonly infects people with suppressed immune systems. He has since identified many genes necessary for innate immunity, most of which are involved in signaling between the cells involved in the immune response.

“A lot of serendipity came into play, as seems to always happen in science,” Kim says. “We were able to find some genes in the worm that are required to protect the worm against pathogenic bacteria. Those genes turned out to be genes also required in humans and mice for innate immune defense.”

Science and medicine

Kim, the son of Korean immigrants, was born in Des Moines, Iowa. When he was 10, his family moved to Covina, Calif., a small city east of Los Angeles. His parents always encouraged him to “find something you love to do.” In high school, Kim was drawn to math, which he continued studying at the University of California at Berkeley while majoring in biophysics.

The summer after his sophomore year, Kim got a job working in a chemistry lab studying the biophysics of photosynthesis. One of his duties was going to the grocery store for bunches of spinach to grind up so the photosynthetic enzymes could be purified. The fresher the spinach, the better the results. “I became the most discriminating buyer of spinach you’ve ever seen,” he says.

During that summer, Kim became absorbed in studying how plants use sunlight to split water to make the oxygen we breathe, and got hooked on doing lab research. Most likely he would have continued studying biophysics exclusively, he says, if not for an accident that occurred after his junior year: While riding his motor scooter near Berkeley, he was hit by a car, fracturing his leg.

Kim spent several months rehabbing the leg, unable to attend his classes. During this time, he was fascinated by how well his doctors were able to heal his injury. “I was really impressed with that. I had no inkling of going to medical school at that time, but through that experience, human health came back into my sphere of thinking,” he says.

After graduating from Berkeley, Kim decided to pursue an MD/PhD at Harvard Medical School. For his PhD in biological chemistry, he studied enzymes involved in bacterial cell-wall synthesis, which are the targets of major classes of antibiotics. After earning his MD, he did an internship and residency in internal medicine at Brigham and Women’s Hospital (BWH) and a fellowship in infectious disease at MGH and BWH.

Although Kim now focuses mainly on lab research and teaching, he still sees patients at MGH. “I just really have always enjoyed trying to take care of sick people,” he says.

Complex interactions

Since arriving at MIT in 2005, Kim has expanded his research to focus on interactions between bacteria and C. elegans and how those interactions influence the worms’ behavior, stress physiology and aging.

For example, worms that eat harmful bacteria will then avoid that type of bacteria. Kim is looking for receptors in worm cells that interact with the molecules produced by the bacteria and trying to identify the genes and molecules involved in the resulting behavioral responses.

Many of the signaling pathways that appear to be involved in these behavioral responses are also found in humans, so Kim believes these studies could also shed light on the physiology of humans — whose bodies contain 10 times more bacterial cells than human cells. “It’s increasingly clear things we do to alter our microbial flora can have a pretty pronounced influence on our physiology,” he says.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos