Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Worm's-Eye View of Immunity

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Biology professor Dennis Kim seeks to understand the physiology and evolution of host-microbe interactions by studying a simple worm.

In 1998, scientists published the first complete genome of a multicellular organism — the worm Caenorhabditis elegans. At the same time, new technologies were emerging to help researchers manipulate genes and learn more about their functions.

Around that time, Dennis Kim was looking for a new research project to do during his upcoming postdoctoral fellowship at Massachusetts General Hospital (MGH). He decided to try to take advantage of the new genetic tools for studying C. elegans. In particular, he wanted to delve into what’s called the “innate immune system” — the first line of defense against invaders such as viruses and bacteria.

“It was a jump into a new area for me. We had no idea what we would find,” says Kim, who is now an associate professor of biology at MIT. “By studying worms we can take a much more basic evolutionary perspective on the function of the innate immune system. We think we can learn very basic principles in a simpler host organism and also gain some perspective on the evolution of the mammalian system as well.”

The innate, or nonspecific, immune system evolved very early on in primitive animals including worms and fruit flies. Vertebrate animals, which evolved later, also have a specific immune system, which targets pathogens very precisely with antibodies, killer T cells and other cells.

In vertebrates, the innate immune system identifies pathogens and serves as an early alert system, mobilizing the immune system to launch a more specific reaction. In worms, the innate system is the only defense.

In Kim’s studies of the C. elegans immune system, he chose to investigate how the worm defends itself against Pseudomonas aeruginosa, a bacterium that commonly infects people with suppressed immune systems. He has since identified many genes necessary for innate immunity, most of which are involved in signaling between the cells involved in the immune response.

“A lot of serendipity came into play, as seems to always happen in science,” Kim says. “We were able to find some genes in the worm that are required to protect the worm against pathogenic bacteria. Those genes turned out to be genes also required in humans and mice for innate immune defense.”

Science and medicine

Kim, the son of Korean immigrants, was born in Des Moines, Iowa. When he was 10, his family moved to Covina, Calif., a small city east of Los Angeles. His parents always encouraged him to “find something you love to do.” In high school, Kim was drawn to math, which he continued studying at the University of California at Berkeley while majoring in biophysics.

The summer after his sophomore year, Kim got a job working in a chemistry lab studying the biophysics of photosynthesis. One of his duties was going to the grocery store for bunches of spinach to grind up so the photosynthetic enzymes could be purified. The fresher the spinach, the better the results. “I became the most discriminating buyer of spinach you’ve ever seen,” he says.

During that summer, Kim became absorbed in studying how plants use sunlight to split water to make the oxygen we breathe, and got hooked on doing lab research. Most likely he would have continued studying biophysics exclusively, he says, if not for an accident that occurred after his junior year: While riding his motor scooter near Berkeley, he was hit by a car, fracturing his leg.

Kim spent several months rehabbing the leg, unable to attend his classes. During this time, he was fascinated by how well his doctors were able to heal his injury. “I was really impressed with that. I had no inkling of going to medical school at that time, but through that experience, human health came back into my sphere of thinking,” he says.

After graduating from Berkeley, Kim decided to pursue an MD/PhD at Harvard Medical School. For his PhD in biological chemistry, he studied enzymes involved in bacterial cell-wall synthesis, which are the targets of major classes of antibiotics. After earning his MD, he did an internship and residency in internal medicine at Brigham and Women’s Hospital (BWH) and a fellowship in infectious disease at MGH and BWH.

Although Kim now focuses mainly on lab research and teaching, he still sees patients at MGH. “I just really have always enjoyed trying to take care of sick people,” he says.

Complex interactions


Since arriving at MIT in 2005, Kim has expanded his research to focus on interactions between bacteria and C. elegans and how those interactions influence the worms’ behavior, stress physiology and aging.

For example, worms that eat harmful bacteria will then avoid that type of bacteria. Kim is looking for receptors in worm cells that interact with the molecules produced by the bacteria and trying to identify the genes and molecules involved in the resulting behavioral responses.

Many of the signaling pathways that appear to be involved in these behavioral responses are also found in humans, so Kim believes these studies could also shed light on the physiology of humans — whose bodies contain 10 times more bacterial cells than human cells. “It’s increasingly clear things we do to alter our microbial flora can have a pretty pronounced influence on our physiology,” he says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Hacking Microbes
Startup’s engineered yeast helps clients produce fragrances and flavors more efficiently.
Thursday, September 08, 2016
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Thursday, September 08, 2016
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Targeting Neglected Diseases
New enzyme-mapping advancement could help drug development for combating diseases in the developing world.
Wednesday, August 17, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!