Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Repair Technique Could Have Many Applications

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.

Published today in the Proceedings of the National Academy of Sciences, the team's findings demonstrate that the novel technique is much simpler than previous methods and establishes the groundwork for major advances in regenerative medicine, drug screening, and biomedical research.

Principal investigator James A. Thomson, co-director of biology at UCSB's Center for Stem Cell Biology and Engineering and professor in the campus's Department of Molecular, Cellular and Developmental Biology, said the discovery holds many practical applications, including paving a new route for correcting genetic disorders. Thomson is also director of regenerative biology at the Morgridge Institute, serves as the James Kress Professor of Embryonic Stem Cell Biology at the University of Wisconsin–Madison, and is a John D. MacArthur professor at UW–Madison's School of Medicine and Public Health.

According to the paper's lead author, Zhonggang Hou of the Morgridge Institute's regenerative biology team, the technique has the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson's, and other diseases. "The fact that it can be applied to human pluripotent stem cells opens the door for meaningful therapeutic applications," said Hou.

The research team focused on Neisseria meningitidis bacteria because it is a good source of the Cas9 protein needed for precisely cleaving damaged sections of DNA. Using different types of small RNA molecules, the research team was able to guide this protein, engendering the careful removal, replacement, or correction of problem genes. "This represents a step forward from other recent technologies built upon proteins, such as zinc finger nucleases and transcription activator-like effector nucleases," said Yan Zhang of Northwestern University, second author of the paper.

These previous gene correction methods required engineered proteins to help with the cutting. The researchers said scientists can synthesize RNA for the new process in as little as one to three days, compared with the weeks or months needed to engineer suitable proteins.

"Human pluripotent stem cells can proliferate indefinitely and they give rise to virtually all human cell types, making them invaluable for regenerative medicine, drug screening, and biomedical research," Thomson said. "This collaboration has taken us further toward realizing the full potential of these cells because we can now manipulate their genomes in a precise, efficient manner."

Erik Sontheimer, another principal investigator and the Soretta and Henry Shapiro Research Professor of Molecular Biology in Northwestern's department of molecular biosciences, Center for Genetic Medicine, and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, said the team's results also offer hopeful signs about the safety of the technique.

"A major concern with previous methods involved inadvertent or off-target cleaving, raising issues about the potential impact in regenerative medicine applications," said Sontheimer. "Beyond overcoming the safety obstacles, the system's ease of use will make what was once considered a difficult project into a routine laboratory technique, catalyzing future research."

Also contributing to the study, which was supported by funding from the National Institutes of Health, the Wynn Foundation, and the Morgridge Institute for Research, were Nicholas Propson, Sara Howden, and Li-Fang Chu from the Morgridge Institute for Research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!