Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Dentistry School Receives $5M to Study Saliva Biomarkers

Published: Thursday, August 15, 2013
Last Updated: Thursday, August 15, 2013
Bookmark and Share
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.

The UCLA School of Dentistry received $5 million in funding from the National Institutes for Health to study biological markers in saliva to attempt to develop a tool for detecting stomach cancer. The study has the potential to create a new paradigm in the field of salivary diagnostics, and it could supply concrete evidence that saliva can be used in the detection of life-threatening diseases, including diabetes and cancers of the pancreas, breasts, ovaries and stomach.

The award comes from the NIH Common Fund, a program established to overcome obstacles in biomedical research that have hindered scientific discovery and its translation into improved human health. The funding awarded to the School of Dentistry comes from the Common Fund's Extracellular RNA Communication initiative, which has awarded leading research institutes around the world a total of $160 million to address the transformative potential of the emerging field of salivary diagnostics.

Leading UCLA's five-year project is Dr. David Wong, a pioneer in the field of salivary diagnostics, the dentistry school's associate dean of research, and the Felix and Mildred Yip Endowed Professor in Dentistry. His team will develop and definitively validate salivary extracellular ribonucleic acid (exRNA) biomarkers for stomach cancer detection.

Conventionally, RNA - which translates genetic code from DNA to make protein - was always believed to reside within cells. However, scientists have recently found that RNA is secreted into extracellular spaces, or spaces outside the cell. Researchers surmised that exRNA acts as an exocrine signal, a signal that travels by way of a duct, to alter the cell traits of target cells. This messaging system occurs in the body's central organs, such as the stomach and heart, and in the extremities, such as the fingers, toes and mouth.

With the Common Fund award, Wong's team will conduct a prospective study to develop a salivary biomarker panel that would definitively validate for stomach cancer detection. Their hope is to capture exRNAs in saliva samples secreted by stomach cancer cells to confirm whether the patient is at risk for stomach cancer.

"Salivary diagnostics is a very dynamic field with a lot of potential and I am excited that our research is advancing toward clinical maturation," Wong said. "The National Institutes for Health's support for developing salivary exRNA biomarkers as part of the Common Fund initiative is a strong statement that saliva is scientifically credible for the detection of systemic disease."

Wong's laboratory, along with collaborators, first discovered salivary exRNA molecules in 2004 and demonstrated their translational utility for detecting oral cancer. Over the next several years, the team developed salivary exRNA biomarkers for a number of oral and systemic diseases, including salivary gland tumors, Sjögren's syndrome and many life-threatening cancers. While there are other diagnostic constituents in saliva, salivary exRNAs are the most reliable markers for disease.

This NIH Common Fund initiative highlights the transformative potential of biological information revealed in exRNAs towards the regulation of health and diseases. Moreover, it echoes President Barrack Obama's Strategy for American Innovation to address the so-called Grand Challenges of the 21st century. High on the list of those challenges is the goal of "early detection of dozens of disease from a saliva sample."

"UCLA is uniquely poised to advance the basic, translational and clinical sciences of salivary diagnostics," said Dr. No-Hee Park, dean of the UCLA School of Dentistry. "A new landscape of saliva biology is on the horizon."

The research will be conducted in collaboration with Dr. Sung Kim, executive vice president and director of gastric cancer at the Samsung Medical Center in Seoul, Korea; Dr. David Chia, a professor in the department of pathology at the David Geffen School of Medicine at UCLA; Dr. David Elashoff, a professor in the department of biostatistics at the UCLA Fielding School of Public Health; and Dr. Yong Kim, an associate professor in the division of oral biology and medicine at the UCLA School of Dentistry.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Cancer Spreads in the Body
Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London.
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!