Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Data Reveal Extent of Genetic Overlap Between Major Mental Disorders

Published: Monday, August 19, 2013
Last Updated: Monday, August 19, 2013
Bookmark and Share
Schizophrenia, bipolar disorder share the most common genetic variation.

The largest genome-wide study of its kind has determined how much five major mental illnesses are traceable to the same common inherited genetic variations.

Researchers funded in part by the National Institutes of Health found that the overlap was highest between schizophrenia and bipolar disorder; moderate for bipolar disorder and depression and for ADHD and depression; and low between schizophrenia and autism.

Overall, common genetic variation accounted for 17-28 percent of risk for the illnesses.

"Since our study only looked at common gene variants, the total genetic overlap between the disorders is likely higher," explained Naomi Wray, Ph.D.(, University of Queensland, Brisbane, Australia, who co-led the multi-site study by the Cross Disorders Group of the Psychiatric Genomics Consortium (PGC)(, which is supported by the NIH's National Institute of Mental Health (NIMH). "Shared variants with smaller effects, rare variants, mutations, duplications, deletions, and gene-environment interactions also contribute to these illnesses."

Dr. Wray, Kenneth Kendler, M.D.(, of Virginia Commonwealth University, Richmond, Jordan Smoller, M.D.(, of Massachusetts General Hospital, Boston, and other members of the PGC group report on their findings August 11, 2013 in the journal Nature Genetics.

"Such evidence quantifying shared genetic risk factors among traditional psychiatric diagnoses will help us move toward classification that will be more faithful to nature," said Bruce Cuthbert, Ph.D., director of the NIMH Division of Adult Translational Research and Treatment Development and coordinator of the Institute's Research Domain Criteria (RDoC) project (, which is developing a mental disorders classification system for research based more on underlying causes.

Earlier this year, PGC researchers - more than 300 scientists at 80 research centers in 20 countries - reported ( the first evidence of overlap between all five disorders. People with the disorders were more likely to have suspect variation at the same four chromosomal sites.

But the extent of the overlap remained unclear. In the new study, they used the same genome-wide information and the largest data sets currently available to estimate the risk for the illnesses attributable to any of hundreds of thousands of sites of common variability in the genetic code across chromosomes.

They looked for similarities in such genetic variation among several thousand people with each illness and compared them to controls - calculating the extent to which pairs of disorders are linked to the same genetic variants.

The overlap in heritability attributable to common genetic variation was about 15 percent between schizophrenia and bipolar disorder, about 10 percent between bipolar disorder and depression, about 9 percent between schizophrenia and depression, and about 3 percent between schizophrenia and autism.

The newfound molecular genetic evidence linking schizophrenia and depression, if replicated, could have important implications for diagnostics and research, say the researchers. They expected to see more overlap between ADHD and autism, but the modest schizophrenia-autism connection is consistent with other emerging evidence.

The study results also attach numbers to molecular evidence documenting the importance of heritability traceable to common genetic variation in causing these five major mental illnesses.

Yet this still leaves much of the likely inherited genetic contribution to the disorders unexplained ( - not to mention non-inherited genetic factors. For example, common genetic variation accounted for 23 percent of schizophrenia, but evidence from twin and family studies estimate its total heritability at 81 percent. Similarly, the gaps are 25 percent vs. 75 percent for bipolar disorder, 28 percent vs. 75 percent for ADHD, 14 percent vs. 80 percent for autism, and 21 percent vs. 37 percent for depression.

Among other types of genetic inheritance known to affect risk and not detected in this study are contributions from rare variants not associated with common sites of genetic variation. However, the researchers say that their results show clearly that more illness-linked common variants with small effects will be discovered with the greater statistical power that comes with larger sample sizes.

"It is encouraging that the estimates of genetic contributions to mental disorders trace those from more traditional family and twin studies. The study points to a future of active gene discovery for mental disorders" said Thomas Lehner, Ph.D., chief of the NIMH Genomics Research Branch, which funds the project.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos