Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Sanford-Burnham to Partner with Pfizer

Published: Tuesday, August 20, 2013
Last Updated: Tuesday, August 20, 2013
Bookmark and Share
The collaboration will see the organisations identify new therapeutic targets for preventing and treating complications of obesity and diabetes.

The team will utilize novel screening tools including systems-biology approaches and technologies developed at the Institute with the aim of discovering new therapeutic strategies for reducing insulin resistance in obesity and diabetes. 

Under the three-year agreement, multi-disciplinary teams from Sanford-Burnham and Pfizer will collaborate to identify and validate new targets for drug discovery. The collaboration combines our expertise in fundamental disease biology and muscle metabolism with Pfizer’s expertise in drug discovery. Investigators will utilize the Conrad Prebys Center for Chemical Genomics to screen for new relevant targets using investigational compounds from Pfizer as well as evaluate compounds previously identified from the NIH chemical library. Once the screening identifies compounds of interest, Sanford-Burnham and Pfizer scientists will collaborate to characterize and further study the “hit” compounds to understand their mechanism of action. These compounds will then be used as “probes” to identify novel therapeutic targets for the treatment of diabetes. 

Finding new medicines for diabetes 
“Diabetes presents an enormous public health burden. There is an acute need to translate innovative science into potential new medicines for people living with this debilitating disease,” said Tim Rolph, Vice President and Head of Cardiovascular and Metabolic Diseases Research Unit at Pfizer. “Pfizer’s collaboration with Sanford-Burnham to use their cutting-edge screen designs is an example of our strategy to work with academic innovators to discover novel therapeutics for prevention and treatment of diabetes.” Pfizer will have access to Sanford-Burnham’s team of world-class scientists and translational infrastructure dedicated to finding new approaches to targeting disease. Collaborating with researchers at a major pharmaceutical company will help us achieve our mission of translating high-impact science into new therapies. “This important collaboration focuses our tremendous scientific and translational firepower on a major medical problem – complications of obesity-related diabetes. Working with Pfizer, we can more quickly bridge the gap between basic and translational research,” said Stephen Gardell, Ph.D., senior director of scientific resources in our Diabetes and Obesity Research Center. 

Advancing drug discovery in the Prebys Center
The Prebys Center houses Sanford-Burnham’s state-of-the-art screening facility established to accelerate the rate of commercialization of basic research in an independent medical research setting. Our discovery capabilities include: ultra-high throughput screening, high-content screening, phenotypic screening, and target-deconvolution technologies. The Prebys Center is led and staffed by industry-trained professionals who work closely with Sanford-Burnham investigators and industry collaborators to translate scientific findings into actionable drug discovery projects.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Cautionary Tale on Genome-Sequencing Diagnostics for Rare Diseases
Studies in several children have raising new questions about inheritance, genomic sequencing, and diagnostic.
Tuesday, May 14, 2013
“Junk DNA” Drives Embryonic Development
An embryo is an amazing thing. From just one initial cell, an entire living, breathing body emerges, full of working cells and organs.
Thursday, December 06, 2012
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos