Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Endocannabinoids Trigger Inflammation That Leads to Diabetes

Published: Thursday, August 22, 2013
Last Updated: Thursday, August 22, 2013
Bookmark and Share
NIH scientists identify possible treatment target for type 2 diabetes.

Researchers at the National Institutes of Health have clarified in rodent and test tube experiments the role that inflammation plays in type 2 diabetes, and revealed a possible molecular target for treating the disease.

The researchers say some natural messenger chemicals in the body are involved in an inflammatory chain that can kill cells in the pancreas, which produces insulin.

A report of the finding appears online in Nature Medicine.

"This study is a significant milestone in an ongoing exploration of the endocannabinoid system's role in the metabolic complications of obesity," says Kenneth R. Warren, Ph.D., acting director of NIH's National Institute on Alcohol Abuse and Alcoholism (NIAAA), which led the study.

Endocannabinoids are natural messengers in the body that help regulate many biological functions. They are chemically similar to the active compound in marijuana.

Recent studies have tied endocannabinoids to the metabolic problems that lead to diabetes. Researchers also have recognized that inflammation appears to play an important role in the pathology of diabetes.

"The identities of the molecular and cellular actors in the inflammatory processes that underlie type 2 diabetes have remained elusive," explains senior author and NIAAA scientific director George Kunos, M.D., Ph.D. "Our study connects endocannabinoids to an inflammatory cascade leading to the loss of beta cells in the pancreas, which is a hallmark of type 2 diabetes."

Working with a strain of genetically obese rats that serve as a model for human type 2 diabetes, Dr. Kunos and his colleagues used a combination of pharmacological and genetic tools to show that endocannabinoids trigger receptors on macrophages in the pancreas.

Macrophages are immune system cells, present in all tissues that rid the body of cellular debris and pathogens.

"Like various other peripheral tissues, such as the liver, skeletal muscles, pancreas, and fatty tissue, macrophages have receptors for endocannabinoids," explains Dr. Kunos.

The researchers demonstrated that endocannabinoid activation of macrophages in the pancreas leads to activation of a protein complex within macrophages called the Nlrp3 inflammasome.

The inflammasome, in turn, releases molecules that cause the death of pancreatic beta cells and the progression of type 2 diabetes in the rats.

"When we treated the rats with compounds that deplete macrophages or block all peripheral cannabinoid receptors, inflammasome activation and type 2 diabetes progression was slowed," noted Dr. Kunos.

In test tube experiments, the researchers showed that macrophages from humans and mice produced the same inflammasome response when they were incubated with endocannabinoids.

However, mouse macrophages that were genetically altered to lack cannabinoid receptors or inflammasomes generated no such response.

Most notably, the researchers showed that by selectively blocking the expression of cannabinoid receptors on macrophages, they could protect and restore beta cell function in the genetically obese rats, which delayed the development and reduced the severity of their diabetes.

The authors conclude that the findings point to a key role in type 2 diabetes for endocannabinoid-induced inflammasome activation in macrophages, and identify cannabinoid receptors on macrophages as a new therapeutic target.

"To understand type 2 diabetes, a public health threat that affects young and old alike, we need to consider all the factors at play," said Monica Skarulis, M.D., staff clinician at National Institute of Diabetes and Digestive and Kidney Diseases and co-author. "We hope that what we've learned from this research will help us develop new strategies to prevent and treat the condition."

In addition to Dr. Kunos' team of NIAAA scientists and Dr. Skarulis, co-authors on the study included researchers from the University of Colorado Medical Campus, Aurora, and the University of Massachusetts Medical School, Worcester.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!