Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Solving the Mysteries of Regeneration

Published: Thursday, August 22, 2013
Last Updated: Thursday, August 22, 2013
Bookmark and Share
Biologist Peter Reddien seeks to understand planarians’ famous ability to grow new body parts.

Few animals can rival the amazing regeneration abilities of the flatworms known as planarians: When the worms’ tails or heads are cut off, they grow new ones, and even a tiny piece of planarian tissue can regrow an entire animal.

Scientists first observed these phenomena more than a century ago, but until the past few years, they knew very little about how planarians achieve these incredible feats. MIT associate professor of biology Peter Reddien has made it his mission to discover the genetic and molecular basis of planarian regeneration, which he describes as one of the great mysteries of biology.

“Cellular and molecular insight into regeneration has come far in the past decade, but we’ve still got a long way to go to understand how an animal regrows a missing body part,” says Reddien, who is a core member of MIT’s Whitehead Institute. “That is the obsessive focus of my lab — to try to understand how regeneration happens, with the conviction that generation of fundamental knowledge about regeneration works will be important for understanding biology broadly and also for generating ideas for therapeutic applications.”

In recent years, Reddien’s lab has identified dozens of genes involved in planarian regeneration. Many of these are related to human genes, and some are active in response to human injuries. “It’s my hope that our continued work will enhance our understanding of what makes some animals great at regeneration and others not as good,” he says.

‘A golden era’


Growing up in Dallas, Reddien was drawn not to planarians but to planets. He closely followed the exploits of NASA, especially the travels of the Voyager spacecraft, with Voyager 2 reaching Neptune and heading out of the solar system by the time Reddien was 15 years old. “From a young age I thought I would be a physicist who would work for NASA or the Jet Propulsion Laboratory,” he says.

He entered the University of Texas as a physics major, but shifted gears after taking a required biology course.

“I realized that we were in a golden era for biological research, that this was going to be a period in history unlike any other for biological research … a period of great discoveries about how the fundamental attributes of life work,” Reddien recalls. “I found that exhilarating, and I got very excited about that as a future potential path for me.”

After graduating from college, Reddien came to MIT as a graduate student in molecular biology, working with Robert Horvitz, now the David H. Koch Professor of Biology. Among other projects, Horvitz’s lab was studying the molecular mechanisms of programmed cell death, a process critical to embryonic development and in defending against cancer.

Reddien finished his PhD in 2002 — the year Horvitz won the Nobel Prize in physiology or medicine for his work in programmed cell death — and went to the University of Utah to do postdoctoral research on regeneration. Reddien describes his decision at the time to launch into study of the molecular basis of regeneration in planarians as “a bit of a gamble.”

“There was a lot of potential, but it was off the radar and in its early stages as a molecular genetic field,” he says. “At that time, the tools for studying gene function in this organism were just in their infancy. There were no published roles for any gene at the time based on disrupting genes and studying what goes wrong in regeneration.”

At Utah, Reddien worked in the lab of Alejandro Sánchez Alvarado, who had recently shown that a new technique known as RNA interference, which allows genes to be selectively turned off, could work in planarians. Until that point, genetic studies of planarian regeneration had not been possible. Reddien was confident that new tools such as RNA interference could get planarians to reveal their regeneration secrets.

“No one had done it, and it was not an established system for taking that type of approach, so I did feel like I was taking a bit of a risk,” Reddien says. “It worked out better than I could have hoped, but I knew that the road was going to be full of challenges because there weren’t established paths to follow to study regeneration defects in these animals.”

A fundamental approach

Since joining the MIT faculty in 2005, Reddien has discovered dozens of genes that play key roles in regeneration, whether initiating the process or helping to determine which body part needs to be replaced. One gene that his lab investigated, known as notum, interacts with a cell-communication system called the Wnt signaling pathway to control whether an animal regrows a head or a tail.

Reddien also found that adult planarians maintain a population of pluripotent stem cells, known as clonogenic neoblasts, that can grow into any type of tissue. These cells are key to tissue regeneration, and his lab has identified genes that give these cells their regenerative potential.

“This is the kind of science you dream of when you’re a kid,” Reddien says. “We’re cutting off animals’ heads and figuring out how they regrow new ones at a molecular level. It’s up to us to develop the methods we need to solve these problems because it’s such a new field. It’s just been a real adventure and that’s something I’m greatly drawn to in science.”

Many of the genes that Reddien has discovered in planarians have counterparts in the human genome, though the functions of many in humans have been little studied. Learning more about them could help advance the field of regenerative medicine.

“We are taking a fundamental science approach to the problem, with the idea that evolution has already selected for mechanisms that allow regenerative repair events that would be the dream of regenerative medicine. The hope is that understanding these mechanisms could lead to new ideas about how applications could be derived to enhance wound healing and repair in humans,” Reddien says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!