Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein-Based Urine Test Predicts Kidney Transplant Outcomes

Published: Friday, August 23, 2013
Last Updated: Friday, August 23, 2013
Bookmark and Share
NIH-funded study provides more evidence supporting development of non-invasive tests.

Levels of a protein in the urine of kidney transplant recipients can distinguish those at low risk of developing kidney injury from those at high risk, a study suggests. The results also suggest that low levels of this protein, called CXCL9, can rule out rejection as a cause of kidney injury. The study appears online Aug. 22 in the American Journal of Transplantation. The work was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

To prevent rejection, kidney transplant recipients typically take immunosuppressive drugs every day. However, these drugs can cause kidney damage and lead to other serious side effects such as cancer, infection and infertility. Even with immunosuppressive therapy, 10 to 15 percent of kidney recipients experience rejection during the first year after transplantation.

Currently, the only definitive way to distinguish rejection from other causes of kidney injury is by performing a biopsy, in which doctors remove a small piece of kidney tissue to look for rejection-associated damage. Although this procedure is generally considered safe, it carries some minor risks for the patient and does not always provide an accurate impression of the overall state of the kidney.

“A non-invasive urine test to accurately monitor the risk of kidney rejection could dramatically reduce the need for biopsies and possibly enable doctors to safely reduce immunosuppressive therapy in some patients,” said NIAID Director Anthony S. Fauci, M.D. “The results of this study support the further development of non-invasive tests for the detection and management of transplant rejection.”

In this multicenter Clinical Trials in Organ Transplantation study, doctors periodically collected urine samples from 280 adult and child kidney transplant recipients for two years after transplantation. Investigators led by Peter Heeger, M.D., of the Icahn School of Medicine at Mount Sinai in New York City, and Donald Hricik, M.D., of Case Western Reserve University in Cleveland, measured the urinary levels of molecules that had previously been associated with rejection. These included two proteins and nine messenger RNAs (mRNAs) — intermediary molecules in the construction of proteins from genes. They identified CXCL9 protein and CXCL9 mRNA as potential biomarkers — molecules that indicate the effect or progress of a disease — for the diagnosis of rejection. 

After further testing, the researchers found that CXCL9 protein was better at ruling out rejection than any of the mRNAs tested. Low levels of the protein biomarker also could identify patients likely to have stable long-term kidney function. Transplant recipients with low urinary CXCL9 protein six months after transplantation were unlikely to experience rejection or loss of kidney function over the next 18 months. In addition, detection of the protein in the urine of transplant recipients was more straightforward than measuring mRNA levels. While proteins can be measured directly in urine, mRNAs must first be extracted from urine samples. The researchers obtained sufficient mRNA from just 76 percent of samples, highlighting the technical challenges of extraction.

“The relative ease of measuring urinary proteins suggests that developing a protein-based urine test for use in clinical practice would be less complicated than an mRNA test,” said Daniel Rotrosen, M.D., director of NIAID’s Division of Allergy, Immunology and Transplantation. “There is strong precedent for the development and use of tests that measure urinary proteins, such as home pregnancy tests.” 

CXCL9 protein levels also may be useful for predicting and monitoring transplant rejection. The investigators noted that urinary CXCL9 levels began to increase up to 30 days before clinical signs of kidney injury, which could allow doctors to intervene early to potentially avoid rejection-associated kidney damage. The protein levels began to drop after treatment for rejection, suggesting that the urine test could be used to monitor treatment progress.  

“Development of non-invasive tests to detect immune activation before kidney damage occurs would help guide the care of kidney transplant recipients,” said NIAID Transplantation Branch Chief Nancy Bridges, M.D., a co-author of the paper. “Clinical application of the findings from this study could help avoid unnecessary biopsies and excess immunosuppression.”

This study was supported by NIH grant number U01AI63594-06. The ClinicalTrials.gov identifier for the study Non-invasive Methods to Monitor Graft Survival in Kidney Transplant Patients is NCT00308802.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!