Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sugar Helps Scientists Find and Assess Prostate Tumors

Published: Friday, August 23, 2013
Last Updated: Friday, August 23, 2013
Bookmark and Share
New GE technology enables UCSF researchers to safely detect tumors in real time.

A natural form of sugar could offer a new, noninvasive way to precisely image tumors and potentially see whether cancer medication is effective, by means of a new imaging technology developed at UC San Francisco in collaboration with GE Healthcare.

The technology uses a compound called pyruvate, which is created when glucose breaks down in the body and which normally supplies energy to cells. In cancer, however, pyruvate is more frequently converted to a different compound, known as lactate.

Previous animal studies showed that scientists could track the levels of pyruvate as it is converted to lactate via magnetic resonance imaging (MRI), by using a technology called hyperpolarization and injecting the hyperpolarized pyruvate into the body. The amount of lactate produced and rate of conversion enabled researchers to precisely detect the limits of a mouse’s tumor, identify which cancers were most aggressive and track early biochemical changes as tumors responded to medication, long before physical changes occurred.

Now, a 31-patient study performed by scientists at UCSF and their collaborators at GE Healthcare has shown that the technology is safe in humans and effectively detects tumors in patients with prostate cancer.

Diagnosing Cancers Without Biopsies

While this first-in-human study was designed to identify a safe dosage and verify effectiveness, it lays the groundwork for using the technology to diagnose a variety of cancers and track treatment noninvasively, without conducting repeated biopsies.

“We now have a safe dose for patients – that was our primary goal,” said Sarah J. Nelson, PhD, a UCSF professor of radiology and director of the Surbeck Laboratory of Advanced Imaging at UCSF, who was lead author on the study and led a diverse team on this project.

“In animal models, the amount of lactate over pyruvate is directly related to the aggressiveness of the cancer. We also have a lot of data that show it’s reduced in cancers after treatment,” she said. “This is a very ubiquitous molecule that will be important in tailoring treatments to specific individuals.”

Prostate cancer is the most common form of cancer, with more than 200,000 new cases reported each year in the United States, according to the Centers for Disease Control and Prevention. The increased use of prostate-specific antigen (PSA) levels for screening men has been widely recognized as having identified more patients with prostate cancer at an earlier, and potentially more treatable, stage. Many of those tumors are slow growing, but it is difficult to predict which those are.

For an oncologist, this real-time imaging could provide immediate feedback on whether a patient should continue active surveillance of the tumor or pursue treatment, and also whether a therapy is working, either during standard treatment or in a clinical trial.

“There are natural risks in any treatment for prostate cancer, including radiation therapy and surgery. Those risks can have an enormous impact on the patient’s quality of life,” said UCSF oncologist Eric Small, MD, a co-author on the paper, UCSF professor of medicine and urology, and deputy director of the UCSF Helen Diller Family Comprehensive Cancer Center. “This technology begins to give us the ability to more accurately assess the extent and risk of an individual patient’s actual cancer, which is absolutely critical, but so far is largely an unmet medical need.”

Collaboration with GE Healthcare

The technology developed out of a collaboration that began nearly eight years ago, when GE Healthcare approached UCSF to see whether it could translate technology it had developed with researchers in Sweden into a clinical application.

The hyperpolarizing technology had been shown to detect animal tumors, but converting that for clinical use was a formidable challenge.

UCSF pulled together a team of researchers ranging from oncologists and radiologists to clinical pharmacists with the precise knowledge of building clean-rooms for pharmaceutical production. At the time, Nelson also was the scientific director of the UCSF arm of the California Institute for Quantitative Biosciences (QB3), which supports both basic and translational science at the crossroads of biology and the quantitative sciences, such as imaging and bioinformatics.

“UCSF and QB3 offered an unusual combination of talent all in one location. They brought together the best engineering from UC Berkeley and the best bioscience and pharmacy knowledge from UCSF, and are now demonstrating the technology in a world-renowned academic medical center,” said Jonathan Murray, managing director of Research Circle Technology at GE Healthcare and a co-author on the paper. “At GE Healthcare, we are delighted with the speed of progress of this collaboration. The science is very exciting.”

Success with Prostate Cancer Patients

In the clinical research study, which started in December 2010, the researchers labeled pyruvate with carbon-13 and injected this “hyperpolarized pyruvate” imaging agent into 31 prostate cancer patients in the UCSF Medical Center and UCSF Helen Diller Family Comprehensive Cancer Center. The team then used an MRI to follow pyruvate and its conversion to lactate in the prostate.

As in previous studies in mice, the higher, more intense signals indicated a more rapid conversion to lactate, possibly a sign of more aggressive cancer. In contrast, there was very limited conversion detected in normal prostate.

The study deliberately focused on patients with low-grade tumors who had not yet received treatment, to identify the safe and appropriate dosage of pyruvate needed. Future studies will use the technology to assess the effectiveness of a patient’s cancer therapy in shrinking their tumor – knowledge that will enable physicians to assess the dosage of chemotherapy needed on an individual basis.

While potential commercial use is still five to 10 years away, the UCSF team has received grants to extend the technology for studies in patients with cancers of the brain, breast, liver, lymph glands, pancreas and prostate. GE Healthcare also has developed equipment to process the hyperpolarized pyruvate in a less technical environment, enabling a broader clinical trial in the future.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!