Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Effects of Parkinson’s Disease Mutation Reversed in Cells

Published: Friday, August 23, 2013
Last Updated: Friday, August 23, 2013
Bookmark and Share
UCSF study used chemical commonly found in anti-wrinkle cream.

UC San Francisco scientists working in the lab used a chemical found in an anti-wrinkle cream to prevent the death of nerve cells damaged by mutations that cause an inherited form of Parkinson’s disease. The team suggests that a similar approach might ward off cell death in the brains of people afflicted with Parkinson’s disease.

The achievement marks a pharmacologic milestone as the first highly specific targeting of a member of an important class of enzymes called kinases to increase rather than to inhibit their activity, according to UCSF chemist Kevan Shokat, PhD, the senior scientist on the study. The research raises hope that similar pharmaceutical strategies might be used for combatting other diseases, including diabetes and cancer, he said.

Mutations that cause malfunction of the targeted enzyme, PINK1, are directly responsible for some cases of early-onset Parkinson’s disease. Loss of PINK1 activity is harmful to the cell’s power plants, called mitochondria, best known for converting food energy into another form of chemical energy used by cells, the molecule ATP.

In Parkinson’s disease, poorly performing mitochondria have been associated with the death of dopamine-producing nerve cells in a region of the brain called the substantia nigra, which plays a major role in control of movement. Loss of these cells is a hallmark of Parkinson’s disease and the cause of prominent symptoms including rigidity and tremor.

A UCSF team led by Shokat, a Howard Hughes Medical Institute Investigator, used the chemical, called kinetin, to increase mutant PINK1 enzyme activity in nerve cells to near normal levels.

“In light of the fact that mutations in PINK1 produce Parkinson’s disease in humans, the finding that kinetin can speed mutated PINK1 activity to near normal levels raises the possibility that kinetin may be used to treat these patients,” Shokat said.

The researchers also found that, in nerve cells with normal PINK1, kinetin boosted enzyme activity beyond typical levels. This finding may be relevant for the most common forms of Parkinson’s disease, in which PINK1 is not mutated, because a previous study showed that similar overactivity of PINK1 can slow the development of abnormal movement in a fruit-fly model of Parkinson’s disease caused by another defect. This defect is elevated production of the protein alpha-synuclein, also a cause of some inherited cases of Parkinson’s disease.

The demonstration in the new study that PINK1 can be boosted in human nerve cells that lack PINK1 mutations therefore suggests that kinetin might also have therapeutic potential in common cases of Parkinson’s disease in which PINK1 is not mutated, Shokat said.

Boosting Activity of Kinase

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, and the 14th leading cause of death in the United States, according to the U.S Centers for Disease Control and Prevention.

Current treatments primarily aim to boost availability of dopamine to brain regions where dopamine-producing nerve cells have been lost.

Although many drugs that inhibit the activity of kinases have been developed over the past decade, including 15 currently approved to treat cancer, Shokat said none has yet been marketed to directly boost activity of a kinase.

The breakthrough in revving up PINK1 activity pharmacologically stemmed from Shokat’s unconventional approach. He targeted the enzyme’s “substrate,” a molecule that binds to an enzyme and undergoes a quick chemical transformation as a result. PINK1 uses ATP as a substrate, and the chemical reaction helps PINK1 in turn drive the activation of another enzyme, called Parkin.

Both of these enzymes are among a small number that previously have been strongly linked to Parkinson’s disease. PINK1 and Parkin act together to monitor the health of mitochondria, and help trigger repair or disposal of damaged mitochondria within the cells, thereby promoting cell survival.

“Therapeutic approaches for enhancing the activity of PINK1 had not been considered, because scientists had not conceived of the idea of developing a new substrate for the enzyme,” Shokat said.

“We found that a small molecule, called KTP, speeds chemical reactions catalyzed by PINK1 better than ATP, the natural substrate. That kind of better-than-natural response is essentially unheard of.”

KTP is too big to fit into other kinases, Shokat said, but PINK1 has a larger ATP “pocket” to hold KTP.

After discovering the potential of KTP, the researchers then determined that kinetin is converted to KTP within cells. Experimentally, kinetin, which can cross blood vessels to get into the brain, has been given by mouth to treat a rare, genetic, neurological disease called familial dysautonomia.

Other researchers on the UCSF study include graduate student Nicholas Hertz, PhD; post-doctoral fellows Martin Sos, PhD and Amandine Berthet, PhD; UCSF faculty members Ken Nakamura, MD, PhD from the Gladstone Institute, and Kurt Thorn, PhD, and Al Burlingame, PhD.

The research was funded by the National Institutes for Health and by the Michael J. Fox Foundation.

Hertz and Shokat are inventors on a patent application related to kinetin and PINK1. UCSF has licensed the patent application to Mitokinin LLC, and Hertz and Shokat are cofounders and members of the company.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!