Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Comprehensive Parkinson's Biomarker Test Has Prognostic and Diagnostic Value

Published: Monday, September 02, 2013
Last Updated: Monday, September 02, 2013
Bookmark and Share
First biomarker results reported from the Parkinson’s Progression Markers Initiative (PPMI).

Results show that a comprehensive test of protein biomarkers in spinal fluid have prognostic and diagnostic value in early stages of Parkinson’s disease.

Compared to healthy adults, the study found that people with early Parkinson’s had lower levels of amyloid beta, tau and alpha synuclein in their spinal fluid. In addition, those with lower concentrations of tau and alpha synuclein had greater motor dysfunction. And early Parkinson’s patients with low levels of amyloid beta and tau were more likely to be classified as having the postural instability-gait disturbance- dominant (PIGD) motor type of disease, where falling, freezing, and walking difficulty are common.

“Biomarkers for Parkinson’s disease such as these could help us diagnose patients earlier, and we’ve now shown that the simultaneous measurement of a variety of neurodegenerative disease proteins is valuable,” said study senior author Leslie M. Shaw, PhD, professor of Pathology and Laboratory Medicine at Penn Medicine. Dr. Shaw and John Q. Trojanowski, MD, PhD, director of the Penn Udall Center for Parkinson’s Research, are co-leaders of the Bioanalytics Core for the Parkinson’s Progression Markers Initiative, an international observational clinical study sponsored by The Michael J. Fox Foundation for Parkinson's Research.

The team evaluated spinal fluid collected from baseline visits of the first 102 PPMI participants - 63 with early, untreated Parkinson’s disease and 39 healthy controls. The spinal fluid was evaluated for levels of five biomarkers: amyloid beta, total tau, phosphorylated tau, alpha synuclein and the ratio of total tau to amyloid beta. Spinal fluid measures of amyloid and tau are currently used in research to distinguish Alzheimer’s disease from other neurodegenerative diseases. In contrast to Alzheimer’s, where tau levels are higher than healthy controls, the study found that early Parkinson’s patients had lower levels of tau than healthy controls. One reason, researchers suggest, could be that interactions between tau and alpha synuclein may limit the release of tau into the cerebrospinal fluid of Parkinson’s patients.

“Through PPMI, we are hoping to identify subgroups of Parkinson’s patients whose disease is likely to progress at a different rate, as early as possible,” said Dr. Trojanowski. “Early prediction is critical, for both motor and dementia symptoms.”

The Parkinson’s PIGD motor subtype has been associated with a more rapid cognitive decline as well as greater functional disability. Using the biomarker test, this initial study found that levels of all spinal fluid biomarkers were lower in the PIGD motor subtype than other types of PD as well as healthy controls. In addition, amyloid beta and phosphorylated tau were at lower levels in the PIGD motor subtype, but were no different in tremor or indeterminate subtypes compared to normal controls.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Tuesday, January 12, 2016
3-D Model Links Facial Features and DNA
An international team of researchers is beginning to connect genetics with facial features, degrees of femininity and racial admixture.
Friday, March 21, 2014
Professor Leads Project to Breed Beans Resistant to Climate Stresses
With support from a $5 million grant, an international team will establish the Feed the Future Innovation Lab for Climate-Resilient Beans.
Monday, November 11, 2013
Researcher Investigates the Role of Specialized Bone Marrow Cells
NIH Bridge Program scholar aims to slow bone metastasis.
Friday, September 27, 2013
Novel Nanoparticles Developed to Deliver Healing Drugs Directly to Bone Cracks
A novel method for delivering healing drugs to newly formed microcracks in bones may help patients with osteoporosis and other medical conditions.
Monday, September 09, 2013
Computer Programs Improve Fingerprint Grading
Three computer programs used together can give fingerprint grading unprecedented consistency and objectivity, according to Penn State researchers.
Friday, July 05, 2013
Endangered Lemurs' Complete Genomes are Sequenced and Analyzed for Conservation
For the first time, the complete genomes of three separate populations of aye-ayes have been sequenced and analyzed in an effort to help guide conservation efforts.
Tuesday, March 26, 2013
Search begins for dean of the College of Agricultural Sciences
Penn State initiates U.S. wide search for candidates.
Thursday, January 10, 2013
Students Develop Low-cost Water Filtering System for African Nation
In an effort to bring fresh water to rural Kenyans students of Penn State's Humanitarian Engineering and Social Entrepreneurship (HESE) program develop a ceramic water filtration system.
Thursday, January 10, 2013
Researchers Identify Gene Required for Nerve Regeneration
A gene that is associated with regeneration of injured nerve cells has been identified by scientists at Penn State and Duke University.
Tuesday, November 06, 2012
Important Gene-Regulation Proteins Pinpointed by New Method
A novel technique has been developed and demonstrated at Penn State to map the proteins that read and regulate chromosomes.
Friday, January 20, 2012
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!