Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Researchers Find Diabetes Drug Extends Health and Lifespan in Mice

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
Study was published in the July 30, 2013 issue of Nature Communications.

Long-term treatment with the type 2 diabetes drug metformin improves health and longevity of male mice when started at middle age, reports an international team of scientists led by researchers at the National Institute on Aging (NIA), part of the National Institutes Health.

The study, which tested two doses of the drug in the male mice, found the higher dose to be toxic in the animals. Scientists emphasized that considerably more research is needed before the implications of metformin for healthy aging are known for humans.

The study, headed by Rafael de Cabo, Ph.D., of the NIA's Intramural Research Program, was published in the July 30, 2013 issue of Nature Communications.

"There is increasing interest in exploring how drugs for one use might be repurposed for another," notes Richard J. Hodes, M.D., director of the NIA. "It is exciting to discover that a drug already known to be safe and effective in humans might be further studied for a possible, alternate use for healthy aging."

Prescribed since the 1960s to treat type 2 diabetes, metformin is known to enhance insulin sensitivity, prompt sugar to be converted to energy, and prevent sugar build up in the liver.

It also reduces risk of health issues associated with metabolic syndrome, a condition characterized by an increased chance for heart disease and stroke, as well as type 2 diabetes.

"Aging is a driving force behind metabolic syndrome and diabetes. Given that metformin is clinically proven to alleviate symptoms of these conditions, and reduce risk of cancer, we thought perhaps it was a good candidate to study for its broader effects on health and lifespan," said de Cabo.

Specifically, de Cabo's research focuses on testing compounds that might mimic benefits of calorie restriction, as shown in some animal models.

A significant reduction in calories causes the body to adjust how it creates and processes energy, generating a mild biological stress, which contributes to the reported health benefits.

Metformin works, at least in part, by also controlling the body's energy use and production. The study offers evidence that metformin might provide some of the positive effects of calorie restriction.

In this study, researchers found male mice on a 0.1 percent metformin treatment had a 5.83 percent increase in lifespan compared to control group mice on a standard diet with no metformin.

The 1 percent metformin treatment had the opposite effect. These mice had a 14.4 percent shorter lifespan compared to the control group, likely due to kidney failure. The lower metformin dose did not seem to cause any negative effect on the renal system.

A battery of tests performed with male mice taking 0.1 percent, 1 percent or no metformin starting at middle age, revealed a clear health benefit of the 0.1 percent treatment. These mice had improved general fitness and weighed less than the control group mice, despite consuming more calories.

Metformin increased their use of fat for energy. Mice on metformin tended to preserve body weight with age, a characteristic associated with increased survival in other studies. They had a lower incidence of cataracts, a common health problem in the strain of mouse.

Not surprisingly, metformin prevented the onset of metabolic syndrome. It had similar effects as calorie restriction on genes in the liver and muscles, which induced longevity-associated activity in the mice. Metformin also appeared to have some antioxidant effects in the mice.

A number of compounds are being tested for their possible applications to improving health with aging. A previous study by de Cabo and colleagues found that resveratrol, present in foods like grapes and nuts, improved a number of health measures in mice, but perhaps not their longevity (http://www.nih.gov/news/health/jul2008/nia-03.htm).

The NIA-sponsored Interventions Testing Program (http://www.nia.nih.gov/research/dab/interventions-testing-program-itp) has studied the effects of several compounds, including metformin, resveratrol, and the immunosuppressant rapamycin, in mice.

The initiative found that rapamycin extended lifespan even when fed to the mice beginning at early-old age and is looking more closely at its possible health benefits.

Learning more about these and other compounds and the mechanisms underlying their effects on the body, may point the way to future aging therapies in humans.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!