Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Researchers Find Diabetes Drug Extends Health and Lifespan in Mice

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
Study was published in the July 30, 2013 issue of Nature Communications.

Long-term treatment with the type 2 diabetes drug metformin improves health and longevity of male mice when started at middle age, reports an international team of scientists led by researchers at the National Institute on Aging (NIA), part of the National Institutes Health.

The study, which tested two doses of the drug in the male mice, found the higher dose to be toxic in the animals. Scientists emphasized that considerably more research is needed before the implications of metformin for healthy aging are known for humans.

The study, headed by Rafael de Cabo, Ph.D., of the NIA's Intramural Research Program, was published in the July 30, 2013 issue of Nature Communications.

"There is increasing interest in exploring how drugs for one use might be repurposed for another," notes Richard J. Hodes, M.D., director of the NIA. "It is exciting to discover that a drug already known to be safe and effective in humans might be further studied for a possible, alternate use for healthy aging."

Prescribed since the 1960s to treat type 2 diabetes, metformin is known to enhance insulin sensitivity, prompt sugar to be converted to energy, and prevent sugar build up in the liver.

It also reduces risk of health issues associated with metabolic syndrome, a condition characterized by an increased chance for heart disease and stroke, as well as type 2 diabetes.

"Aging is a driving force behind metabolic syndrome and diabetes. Given that metformin is clinically proven to alleviate symptoms of these conditions, and reduce risk of cancer, we thought perhaps it was a good candidate to study for its broader effects on health and lifespan," said de Cabo.

Specifically, de Cabo's research focuses on testing compounds that might mimic benefits of calorie restriction, as shown in some animal models.

A significant reduction in calories causes the body to adjust how it creates and processes energy, generating a mild biological stress, which contributes to the reported health benefits.

Metformin works, at least in part, by also controlling the body's energy use and production. The study offers evidence that metformin might provide some of the positive effects of calorie restriction.

In this study, researchers found male mice on a 0.1 percent metformin treatment had a 5.83 percent increase in lifespan compared to control group mice on a standard diet with no metformin.

The 1 percent metformin treatment had the opposite effect. These mice had a 14.4 percent shorter lifespan compared to the control group, likely due to kidney failure. The lower metformin dose did not seem to cause any negative effect on the renal system.

A battery of tests performed with male mice taking 0.1 percent, 1 percent or no metformin starting at middle age, revealed a clear health benefit of the 0.1 percent treatment. These mice had improved general fitness and weighed less than the control group mice, despite consuming more calories.

Metformin increased their use of fat for energy. Mice on metformin tended to preserve body weight with age, a characteristic associated with increased survival in other studies. They had a lower incidence of cataracts, a common health problem in the strain of mouse.

Not surprisingly, metformin prevented the onset of metabolic syndrome. It had similar effects as calorie restriction on genes in the liver and muscles, which induced longevity-associated activity in the mice. Metformin also appeared to have some antioxidant effects in the mice.

A number of compounds are being tested for their possible applications to improving health with aging. A previous study by de Cabo and colleagues found that resveratrol, present in foods like grapes and nuts, improved a number of health measures in mice, but perhaps not their longevity (http://www.nih.gov/news/health/jul2008/nia-03.htm).

The NIA-sponsored Interventions Testing Program (http://www.nia.nih.gov/research/dab/interventions-testing-program-itp) has studied the effects of several compounds, including metformin, resveratrol, and the immunosuppressant rapamycin, in mice.

The initiative found that rapamycin extended lifespan even when fed to the mice beginning at early-old age and is looking more closely at its possible health benefits.

Learning more about these and other compounds and the mechanisms underlying their effects on the body, may point the way to future aging therapies in humans.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Saturday, July 23, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
Brain Circuits Helps People Cope With Stress
Researchers at NIH have identified brain patterns in humans that appear to underlie “resilient coping,” to stress that help some people handle stressful situations better than others.
Wednesday, July 20, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Use it or Lose it: Visual Activity Regenerates Links Between Eye, Brain
The mouse study is first to show visual stimulation helps re-wire visual system and partially restores sight.
Tuesday, July 12, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
NIH-Funded Center to Study Inefficiencies in Clinical Trials
Researchers at the Duke Clinical Research Institute (DCRI) and Vanderbilt University Medical Center (VUMC) have received a major federal grant to study how multisite clinical trials of new drugs and therapies in children and adults can be conducted more rapidly and efficiently.
Thursday, July 07, 2016
NIH Funds Zika Virus Study Involving U.S. Olympic Team
Researchers will monitor potential Zika virus exposure among a subset of athletes traveling to Brazil.
Wednesday, July 06, 2016
PREVAIL Treatment Trial for Men with Persistent Ebola Viral RNA
The six-month study will enroll 60 to 120 EVD survivors.
Wednesday, July 06, 2016
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Friday, July 01, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!