Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Grants to Investigate Disease-Related Variations in Genetic Makeup

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
Studies focus on underlying susceptibilities in minority populations.

Five research teams have received four-year awards to study the genomics of disease susceptibility in ethnically diverse populations. The projects aim to unravel the subtle variations in genetic makeup among groups — including African-Americans, Asian-Americans, Hispanics and more — that may account for differences in risks for conditions such as high blood pressure and high blood lipids, in addition to common diseases such as cancer and heart disease.

These research teams are receiving support — more than $3.8 million in fiscal year 2013, and nearly $14 million over four years, based on the availability of funds — through the Population Architecture Using Genomics and Epidemiology (PAGE) program of the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. The current grantees are the second group of researchers to be funded through the PAGE program.

“The goal of the PAGE program is to investigate ancestrally diverse populations to gain a better understanding of how genetic factors influence susceptibility to disease,” said epidemiologist Lucia Hindorff, Ph.D., PAGE program director at NHGRI.

Such factors include variations called single nucleotide polymorphisms, or SNPs. These are tiny spelling changes in the DNA code that can affect a person’s risk of developing a disease or alter a response to medications. Over the years, a research approach called a genome-wide association study (GWAS) has led to the discovery of hundreds of gene variants associated with common diseases. This next phase of the PAGE program will focus on expanding the number of genetic variants analyzed to include those that are more rare and likely to be functional. Scientists hope that these common and rare genetic variants will allow them to piece together the complex biological picture of many diseases and lead to more personalized prevention, diagnoses and treatment.

To date, much of this research — including the initial round of PAGE grants — has focused on whites. The new round of grants supports studies on groups of more diversified heritages.

“We wanted the second group of grants to focus on non-whites because many tend to have a greater incidence of disease,” said Dr. Hindorff. For example, African-Americans, Hispanics and Native Americans tend to have a higher incidence of high blood pressure and obesity, along with accompanying heart disease and risk of stroke compared to whites.

“There are often population-related biological pathways that contribute to disease, so looking at many traits and diseases together gives a more complete picture of the role of genetic variation,” she said. “All of the funded studies take advantage of large epidemiological studies and datasets.”

The following groups have been awarded grants (pending available funds):

University of North Carolina, Chapel Hill, $3.1 million

Principal Investigator: Kari North, Ph.D.

Dr. North and her colleagues collaborate in a program called CALiCo II, or Genetic Epidemiology of Causal Variants Across the Life Course Phase II. The partnership focuses on population-based studies aimed at uncovering potential connections between genetic variants and complex diseases and conditions, such as heart disease, type 2 diabetes, obesity and hypertension. The scientists will analyze the DNA collected from several of these large studies involving many Hispanic and African American participants to pinpoint rare variants that might play roles in these diseases and conditions.

Fred Hutchinson Cancer Research Center, Seattle, $2.9 million

Co-Principal Investigators: Charles Kooperberg, Ph.D., and Ulrike Peters, Ph.D.

The researchers will focus on minority populations to try to better understand the impact of rare variants on the development of common diseases such as diabetes, heart disease and cancer, and conditions such as inflammation, high glucose, insulin resistance and abnormal lipid levels. They plan to study rare gene variations found in the genome’s protein-coding regions and their association with these conditions and diseases in African-Americans, Hispanics and Native Americans.

To do this, the team will study participants from the Women’s Health Initiative (WHI), a long-term national health study focused on strategies for chronic disease prevention. The scientists will compare the DNA of the WHI subjects to the DNA sequences of approximately 350,000 rare gene variants that are associated with these diseases and conditions. The scientists hope that identifying new genome locations and variants associated with disease susceptibility may provide new clues to disease development and help in screening and drug discovery.

University of Southern California, Los Angeles, and the University of Hawaii, Honolulu, $3.1 million

Co-Principal Investigators: Christopher Haiman, Ph.D., and Loic Le Marchand, M.D., Ph.D.

Drs. Haiman, Marchand and their co-workers will examine the DNA from samples collected from the Multiethnic Cohort (MEC), a population-based study of more than 215,000 individuals ages 45 to 75 from California and Hawaii (which includes several racial/ethnic groups such as African-Americans, Japanese-Americans, Hispanics, Native Hawaiians and whites who are at varying risk for chronic diseases. They will study gene variants linked to a wide range of diseases and conditions, such as type 2 diabetes, obesity, common cancers, fasting insulin levels, high blood glucose and high lipids. The researchers hope they will uncover new gene variant-disease associations, and that their findings will enable them to build models to understand disease risks in these diverse groups.

Mount Sinai School of Medicine, New York City, $2.9 million

Principal Investigator: Ruth Loos, Ph.D.

Dr. Loos and her colleagues will examine data from approximately 29,000 participants of the Mount Sinai BioMe Biobank, an ongoing resource based on electronic medical records from several ethnically diverse communities in New York City. The researchers aim to gain a greater understanding of the underlying causes of differences in disease incidence in these communities by studying the differences in genetic make-up in these groups that contribute to metabolic, heart, and kidney disorders. The new insights are expected to improve treatment of at-risk populations and may lead to reductions in health disparities among underserved minority populations.

Rutgers University, New Brunswick, N.J., $2.9 million

Co-Principal Investigators: Tara Matise, Ph.D., and Steven Buyske, Ph.D.

The PAGE coordinating center will serve as a centralized resource to help organize and manage research study logistics, as well as data gathering and analyses, and to facilitate collaborations. The coordinating center team includes statistical, population and molecular geneticists, genetic epidemiologists, computer and information scientists and biostatisticians. It will also serve as a data clearinghouse for results.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos