Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Grants to Investigate Disease-Related Variations in Genetic Makeup

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
Studies focus on underlying susceptibilities in minority populations.

Five research teams have received four-year awards to study the genomics of disease susceptibility in ethnically diverse populations. The projects aim to unravel the subtle variations in genetic makeup among groups — including African-Americans, Asian-Americans, Hispanics and more — that may account for differences in risks for conditions such as high blood pressure and high blood lipids, in addition to common diseases such as cancer and heart disease.

These research teams are receiving support — more than $3.8 million in fiscal year 2013, and nearly $14 million over four years, based on the availability of funds — through the Population Architecture Using Genomics and Epidemiology (PAGE) program of the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. The current grantees are the second group of researchers to be funded through the PAGE program.

“The goal of the PAGE program is to investigate ancestrally diverse populations to gain a better understanding of how genetic factors influence susceptibility to disease,” said epidemiologist Lucia Hindorff, Ph.D., PAGE program director at NHGRI.

Such factors include variations called single nucleotide polymorphisms, or SNPs. These are tiny spelling changes in the DNA code that can affect a person’s risk of developing a disease or alter a response to medications. Over the years, a research approach called a genome-wide association study (GWAS) has led to the discovery of hundreds of gene variants associated with common diseases. This next phase of the PAGE program will focus on expanding the number of genetic variants analyzed to include those that are more rare and likely to be functional. Scientists hope that these common and rare genetic variants will allow them to piece together the complex biological picture of many diseases and lead to more personalized prevention, diagnoses and treatment.

To date, much of this research — including the initial round of PAGE grants — has focused on whites. The new round of grants supports studies on groups of more diversified heritages.

“We wanted the second group of grants to focus on non-whites because many tend to have a greater incidence of disease,” said Dr. Hindorff. For example, African-Americans, Hispanics and Native Americans tend to have a higher incidence of high blood pressure and obesity, along with accompanying heart disease and risk of stroke compared to whites.

“There are often population-related biological pathways that contribute to disease, so looking at many traits and diseases together gives a more complete picture of the role of genetic variation,” she said. “All of the funded studies take advantage of large epidemiological studies and datasets.”

The following groups have been awarded grants (pending available funds):

University of North Carolina, Chapel Hill, $3.1 million

Principal Investigator: Kari North, Ph.D.

Dr. North and her colleagues collaborate in a program called CALiCo II, or Genetic Epidemiology of Causal Variants Across the Life Course Phase II. The partnership focuses on population-based studies aimed at uncovering potential connections between genetic variants and complex diseases and conditions, such as heart disease, type 2 diabetes, obesity and hypertension. The scientists will analyze the DNA collected from several of these large studies involving many Hispanic and African American participants to pinpoint rare variants that might play roles in these diseases and conditions.

Fred Hutchinson Cancer Research Center, Seattle, $2.9 million

Co-Principal Investigators: Charles Kooperberg, Ph.D., and Ulrike Peters, Ph.D.

The researchers will focus on minority populations to try to better understand the impact of rare variants on the development of common diseases such as diabetes, heart disease and cancer, and conditions such as inflammation, high glucose, insulin resistance and abnormal lipid levels. They plan to study rare gene variations found in the genome’s protein-coding regions and their association with these conditions and diseases in African-Americans, Hispanics and Native Americans.

To do this, the team will study participants from the Women’s Health Initiative (WHI), a long-term national health study focused on strategies for chronic disease prevention. The scientists will compare the DNA of the WHI subjects to the DNA sequences of approximately 350,000 rare gene variants that are associated with these diseases and conditions. The scientists hope that identifying new genome locations and variants associated with disease susceptibility may provide new clues to disease development and help in screening and drug discovery.

University of Southern California, Los Angeles, and the University of Hawaii, Honolulu, $3.1 million

Co-Principal Investigators: Christopher Haiman, Ph.D., and Loic Le Marchand, M.D., Ph.D.

Drs. Haiman, Marchand and their co-workers will examine the DNA from samples collected from the Multiethnic Cohort (MEC), a population-based study of more than 215,000 individuals ages 45 to 75 from California and Hawaii (which includes several racial/ethnic groups such as African-Americans, Japanese-Americans, Hispanics, Native Hawaiians and whites who are at varying risk for chronic diseases. They will study gene variants linked to a wide range of diseases and conditions, such as type 2 diabetes, obesity, common cancers, fasting insulin levels, high blood glucose and high lipids. The researchers hope they will uncover new gene variant-disease associations, and that their findings will enable them to build models to understand disease risks in these diverse groups.

Mount Sinai School of Medicine, New York City, $2.9 million

Principal Investigator: Ruth Loos, Ph.D.

Dr. Loos and her colleagues will examine data from approximately 29,000 participants of the Mount Sinai BioMe Biobank, an ongoing resource based on electronic medical records from several ethnically diverse communities in New York City. The researchers aim to gain a greater understanding of the underlying causes of differences in disease incidence in these communities by studying the differences in genetic make-up in these groups that contribute to metabolic, heart, and kidney disorders. The new insights are expected to improve treatment of at-risk populations and may lead to reductions in health disparities among underserved minority populations.

Rutgers University, New Brunswick, N.J., $2.9 million

Co-Principal Investigators: Tara Matise, Ph.D., and Steven Buyske, Ph.D.

The PAGE coordinating center will serve as a centralized resource to help organize and manage research study logistics, as well as data gathering and analyses, and to facilitate collaborations. The coordinating center team includes statistical, population and molecular geneticists, genetic epidemiologists, computer and information scientists and biostatisticians. It will also serve as a data clearinghouse for results.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos