Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Awards Focus on Nanopore Technology For DNA Sequencing

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the NIH.

Nearly $17 million to eight research teams has been awarded through the National Human Genome Research Institute Advanced DNA Sequencing Technology program.  

"Nanopore technology shows great promise, but it is still a new area of science. We have much to learn about how nanopores can work effectively as a DNA sequencing technology, which is why five of the program's eight grants are exploring this approach," said Jeffery A. Schloss, Ph.D., program director for NHGRI's Advanced DNA Sequencing Technology program and director of the Division of Genome Sciences.

Nanopore-based DNA sequencing involves threading single DNA strands through tiny pores. Individual base pairs -- the chemical letters of DNA - are then read one at a time as they pass through the nanopore. The bases are identified by measuring the difference in their effect on current flowing through the pore. For perspective, a human hair is 100,000 nanometers in diameter; a strand of DNA is only 2 nanometers in diameter. Nanopores used in DNA sequencing are 1 to 2 nanometers in diameter.

This technology offers many potential advantages over current DNA sequencing methods, said Dr. Schloss. Such advantages include real-time sequencing of single DNA molecules at low cost and the ability for the same molecule to be reassessed over and over again. Current systems involve isolating DNA and chemically labeling and copying it. DNA has to be broken up, and small segments are sequenced many times. Only the first step of isolating the DNA would be necessary with nanopore technology. 

Innovation is crucial in these as well as the other (non-nanopore) studies being funded. For example, one research team eventually hopes to use light to sequence DNA on a cell phone camera chip for under $100. 

The new grants are awarded to:  

University of Illinois, Urbana-Champaign, $2.47 million over four years (pending available funds) Principal Investigator: Oleksii Aksimentiev, Ph.D.

Dr. Aksimentiev and his colleagues plan to use nanopores as sensors. The researchers are studying the effects of combining synthetic nanopores with a light-based technique to control the flow of DNA molecules through the pores. They will use a type of spectroscopy to read the chemical sequence of the DNA.  

University of New Mexico Health Sciences Center, Albuquerque, $1.35 million over three years (pending available funds) Principal Investigator: Jeremy Edwards, Ph.D.

Dr. Edwards and his colleagues plan to develop innovative molecular biology tools to improve whole-genome sequencing, which entails reading a person's entire genetic blueprint. The researchers hope that better methods of preparing the DNA molecules for sequencing will help scientists identify and link genetic variants to disease and, ultimately, lead to new treatments.  

University of Washington, Seattle, $3.83 million over four years (pending available funds) Principal Investigator: Jens Gundlach, Ph.D.

The researchers plan to continue developing the use of nanopore DNA sequencing technology involving a type of protein nanopore called MspA. Part of their research will focus on improving the control of movement of DNA through the nanopore and on developing algorithms to identify DNA bases.

Columbia University, New York City, $5.25 million over three years (pending available funds) Principal Investigators: Jingyue Ju, Ph.D., George M. Church, Ph.D., (Harvard Medical School, Boston) and James John Russo, Ph.D. (Columbia University, New York City) 

Dr. Ju and his colleagues plan to develop a miniaturized electronic system using nanopores to analyze single molecules of DNA in real time. They will construct large arrays of nanopores to create DNA sequencing chips, enabling them to determine DNA bases during a specific biochemical reaction. They hope this technique will enable them to read large sections of DNA more accurately and rapidly than is now possible. 

Eve Biomedical, Inc., Mountain View, CA., $493,000 over two years (pending available funds) Principal Investigator: Theofilos Kotseroglou, Ph.D. 

Dr. Kotseroglou's research team intends to develop a DNA sequencing system that can sequence an entire human genome for under $100. The overall system will be based on using light to sequence DNA on a cell phone camera chip. For now, his group plans to continue studying ways to accurately read long sections of DNA and develop software tools and bioinformatics.

University of Massachusetts, Amherst, $1.07 million over four years (pending available funds) Principal Investigator: Murugappan Muthukumar, Ph.D.

Dr. Muthukumar's research group plans a theoretical approach to study several major challenges underlying nanopore-based DNA sequencing, including slowing down the rate at which DNA molecules flow through the pores, the effects of specific ions, changes in the shape of the DNA molecule and other aspects of the environment.

University of North Carolina at Chapel Hill, $2.05 million over four years (pending available funds) Principal Investigator: John Michael Ramsey, Ph.D.

Dr. Ramsey and his co-workers plan to develop a low-cost method for rapidly mapping individual genomes. Such maps will help determine how large mutations in DNA structure contribute to human disease and improve diagnostic testing using genomics. 

Electronic Biosciences, Inc., San Diego, $239,000 Principal Investigator: Anna Schibel, Ph.D.

Dr. Schibel and her co-workers will develop chemical methods to slow the rate by which single-stranded DNA molecules pass through protein nanopores. Such approaches may enable the development of faster, lower-cost DNA sequencing techniques.    

The costs of DNA sequencing have greatly declined since 2003, when the genome sequencing performed under the Human Genome Project was completed at a cost of approximately $1 billion. Only a year later, in 2004, sequencing a human genome cost an estimated $10-50 million, thanks to improvements in technologies and tools. By 2009, NHGRI met its goal of producing high-quality human genome sequences at a 100-fold reduction in price, or $100,000. While achieving another 100-fold drop in price has been difficult, sequencing a person's genome today costs about $5,000 to $6,000 <http://www.genome.gov/sequencingcosts>.

The grant numbers of the awards are the following: R01 HG007406; R01 HG006876; R01 HG005115; R01 HG007415; R43 HG007386; R01 HG002776; R01 HG007407; and R43 HG006878.

Additional information about NHGRI can be found below.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wednesday, September 28, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!