Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Awards Focus on Nanopore Technology For DNA Sequencing

Published: Monday, September 09, 2013
Last Updated: Monday, September 09, 2013
Bookmark and Share
The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the NIH.

Nearly $17 million to eight research teams has been awarded through the National Human Genome Research Institute Advanced DNA Sequencing Technology program.  

"Nanopore technology shows great promise, but it is still a new area of science. We have much to learn about how nanopores can work effectively as a DNA sequencing technology, which is why five of the program's eight grants are exploring this approach," said Jeffery A. Schloss, Ph.D., program director for NHGRI's Advanced DNA Sequencing Technology program and director of the Division of Genome Sciences.

Nanopore-based DNA sequencing involves threading single DNA strands through tiny pores. Individual base pairs -- the chemical letters of DNA - are then read one at a time as they pass through the nanopore. The bases are identified by measuring the difference in their effect on current flowing through the pore. For perspective, a human hair is 100,000 nanometers in diameter; a strand of DNA is only 2 nanometers in diameter. Nanopores used in DNA sequencing are 1 to 2 nanometers in diameter.

This technology offers many potential advantages over current DNA sequencing methods, said Dr. Schloss. Such advantages include real-time sequencing of single DNA molecules at low cost and the ability for the same molecule to be reassessed over and over again. Current systems involve isolating DNA and chemically labeling and copying it. DNA has to be broken up, and small segments are sequenced many times. Only the first step of isolating the DNA would be necessary with nanopore technology. 

Innovation is crucial in these as well as the other (non-nanopore) studies being funded. For example, one research team eventually hopes to use light to sequence DNA on a cell phone camera chip for under $100. 

The new grants are awarded to:  

University of Illinois, Urbana-Champaign, $2.47 million over four years (pending available funds) Principal Investigator: Oleksii Aksimentiev, Ph.D.

Dr. Aksimentiev and his colleagues plan to use nanopores as sensors. The researchers are studying the effects of combining synthetic nanopores with a light-based technique to control the flow of DNA molecules through the pores. They will use a type of spectroscopy to read the chemical sequence of the DNA.  

University of New Mexico Health Sciences Center, Albuquerque, $1.35 million over three years (pending available funds) Principal Investigator: Jeremy Edwards, Ph.D.

Dr. Edwards and his colleagues plan to develop innovative molecular biology tools to improve whole-genome sequencing, which entails reading a person's entire genetic blueprint. The researchers hope that better methods of preparing the DNA molecules for sequencing will help scientists identify and link genetic variants to disease and, ultimately, lead to new treatments.  

University of Washington, Seattle, $3.83 million over four years (pending available funds) Principal Investigator: Jens Gundlach, Ph.D.

The researchers plan to continue developing the use of nanopore DNA sequencing technology involving a type of protein nanopore called MspA. Part of their research will focus on improving the control of movement of DNA through the nanopore and on developing algorithms to identify DNA bases.

Columbia University, New York City, $5.25 million over three years (pending available funds) Principal Investigators: Jingyue Ju, Ph.D., George M. Church, Ph.D., (Harvard Medical School, Boston) and James John Russo, Ph.D. (Columbia University, New York City) 

Dr. Ju and his colleagues plan to develop a miniaturized electronic system using nanopores to analyze single molecules of DNA in real time. They will construct large arrays of nanopores to create DNA sequencing chips, enabling them to determine DNA bases during a specific biochemical reaction. They hope this technique will enable them to read large sections of DNA more accurately and rapidly than is now possible. 

Eve Biomedical, Inc., Mountain View, CA., $493,000 over two years (pending available funds) Principal Investigator: Theofilos Kotseroglou, Ph.D. 

Dr. Kotseroglou's research team intends to develop a DNA sequencing system that can sequence an entire human genome for under $100. The overall system will be based on using light to sequence DNA on a cell phone camera chip. For now, his group plans to continue studying ways to accurately read long sections of DNA and develop software tools and bioinformatics.

University of Massachusetts, Amherst, $1.07 million over four years (pending available funds) Principal Investigator: Murugappan Muthukumar, Ph.D.

Dr. Muthukumar's research group plans a theoretical approach to study several major challenges underlying nanopore-based DNA sequencing, including slowing down the rate at which DNA molecules flow through the pores, the effects of specific ions, changes in the shape of the DNA molecule and other aspects of the environment.

University of North Carolina at Chapel Hill, $2.05 million over four years (pending available funds) Principal Investigator: John Michael Ramsey, Ph.D.

Dr. Ramsey and his co-workers plan to develop a low-cost method for rapidly mapping individual genomes. Such maps will help determine how large mutations in DNA structure contribute to human disease and improve diagnostic testing using genomics. 

Electronic Biosciences, Inc., San Diego, $239,000 Principal Investigator: Anna Schibel, Ph.D.

Dr. Schibel and her co-workers will develop chemical methods to slow the rate by which single-stranded DNA molecules pass through protein nanopores. Such approaches may enable the development of faster, lower-cost DNA sequencing techniques.    

The costs of DNA sequencing have greatly declined since 2003, when the genome sequencing performed under the Human Genome Project was completed at a cost of approximately $1 billion. Only a year later, in 2004, sequencing a human genome cost an estimated $10-50 million, thanks to improvements in technologies and tools. By 2009, NHGRI met its goal of producing high-quality human genome sequences at a 100-fold reduction in price, or $100,000. While achieving another 100-fold drop in price has been difficult, sequencing a person's genome today costs about $5,000 to $6,000 <>.

The grant numbers of the awards are the following: R01 HG007406; R01 HG006876; R01 HG005115; R01 HG007415; R43 HG007386; R01 HG002776; R01 HG007407; and R43 HG006878.

Additional information about NHGRI can be found below.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos