Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Broad Institute and Bayer Join Forces

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery.

The goal of this collaboration is to jointly discover and develop therapeutic agents that selectively target cancer genome alterations over a period of five years.

“We look forward to working together with our Bayer colleagues to translate scientific discoveries into novel cancer therapeutics,” said Professor Eric Lander, President and Director of Broad Institute. “The Broad’s deep expertise and knowledge in cancer genomics, chemical biology and drug discovery perfectly complement Bayer's decades of experience in pharmaceutical development. We are thrilled to be working with Bayer in such a visionary collaboration.”

Oncogenomics is a promising field of oncology research that identifies and characterizes genes which are associated with cancer. Cancer is caused by the accumulation of DNA mutations which lead to uncontrolled cell proliferation and tumor formation. The goal of oncogenomics research is to identify new genes which, when mutated, stimulate or lose the ability to suppress tumor cell growth. These genes may provide new insights into cancer diagnosis, prediction of clinical outcomes, and new targets for cancer therapies. Targeting individual patient tumor mutations will allow for the development of more personalized cancer treatments.

“We are excited to collaborate with such a prestigious research institute as the Broad Institute which brings together researchers from Harvard, MIT, and the Harvard hospitals,” said Professor Andreas Busch, Head of Global Drug Discovery and Member of the Executive Committee of Bayer HealthCare. “The Broad Institute’s scientists have created impressive systematic catalogues of mutational changes across different types of tumors, laying a foundation for the development of new cancer therapies and diagnostics. The alliance is another significant step underlining our engagement in the field of oncology and personalized medicine.”

As part of the collaboration, the Broad Institute will share its oncogenomic expertise. Both parties will explore their compound libraries and use their screening platforms as well as medicinal chemistry expertise to benefit joint projects. The collaboration will be based on joint decision-making and the rights to the research findings are shared equally between the partners. Joint research and joint steering committees will be established for the initiation and selection of projects, and as governance structures. Bayer will have an option for an exclusive license for therapeutic agents at preclinical development stage. Financial terms of the agreement were not disclosed.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Develop a New Means of Killing Harmful Bacteria
Engineered particles are capable of producing toxins that are deadly to targeted bacteria.
Friday, June 26, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Scientists Make Connection Between Genetic Variation and Immune System
Researchers demonstrate how genetic variations can influence immune cell function.
Tuesday, May 13, 2014
Taking Immune Cells for a Test Drive
Combining biological experimentation on human white blood cells with advanced computational methods can help explain the functional impact of human genetic variation on immune disease.
Monday, March 17, 2014
Charting Microbial Ecosystem of Crohn’s Disease
Study analyzed the microbiomes of 447 newly-diagnosed patients with Crohn’s and 221 healthy individuals.
Thursday, March 13, 2014
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!