Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tuberculosis and Parkinson’s Disease Linked by Unique Protein

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
UCSF researchers seek way to boost protein to fight both diseases.

A protein at the center of Parkinson’s disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to a UC San Francisco-led research team.

The protein, named Parkin, already is the focus of intense investigation in Parkinson’s disease, in which its malfunction is associated with a loss of nerve cells. UCSF microbiologist and tuberculosis expert Jeffery Cox, PhD, and his colleagues now report that Parkin also acts on tuberculosis, triggering destruction of the bacteria by immune cells known as macrophages. Results appeared online on Sept. 4 in the journal Nature.

The finding suggests that disease-fighting strategies already under investigation in pre-clinical studies for Parkinson’s disease might also prove useful in fighting tuberculosis, according to Cox. Cox is investigating ways to ramp up Parkin activity in mice infected with tuberculosis using a strategy similar to one being explored by his UCSF colleague Kevan Shokat, PhD, as a way to ward off neurodegeneration in Parkinson’s disease.

Globally, tuberculosis kills 1.4 million people each year, spreading from person to person through the air. Parkinson’s disease, the most common neurodegenerative movement disorder, also affects millions of mostly elderly people worldwide.

Variations of Parkin Associated with Increased Susceptibility to Tuberculosis

Cox homed in on the enzyme Parkin as a common element in Parkinson’s and tuberculosis through his investigations of how macrophages engulf and destroy bacteria. In a sense, the macrophage — which translates from Greek as "big eater” — gobbles down foreign bacteria, through a process scientists call xenophagy.

Mycobacterium tuberculosis, along with a few other types of bacteria, including Salmonella and leprosy-causing Mycobacterium leprae, are different from other kinds of bacteria in that, like viruses, they need to get inside cells to mount a successful infection.

The battle between macrophage and mycobacterium can be especially intense. M. tuberculosis invades the macrophage, but then becomes engulfed in a sac within the macrophage that is pinched off from the cell’s outer membrane. The bacteria often escape this intracellular jail by secreting a protein that degrades the sac, only to be targeted yet again by molecular chains made from a protein called ubiquitin.

Previously, Cox discovered molecules that escort these chained mycobacteria to more secure confinement within compartments inside cells called lysosomes, where the bacteria are destroyed.

The cells of non-bacterial organisms ranging in complexity from baker’s yeast to humans also use a similar mechanism — called autophagy — to dispose of their own unneeded molecules or worn out cellular components. Among the most abundant and crucial of these components are the cell’s mitochondria, metabolic powerhouses that convert food molecules into a source of energy that the cell can readily use to carry out its everyday housekeeping chores, as well as its more specialized functions.

Like other cellular components, mitochondria can wear out and malfunction, and often require replacement. The process through which mitochondria are disposed of, called mitophagy, depends on Parkin.

Cox became curious about the enzyme when he learned that specific, naturally occurring variations in the Parkin gene, called polymorphisms, are associated with increased susceptibility to tuberculosis infection.

“Because of the commonalities between mitophagy and the xenophagy of intracellular mycobacteria, as well as the links between Parkin gene polymorphisms and increased susceptibility to bacterial infection in humans, we speculated that Parkin may also be recruited to M. tuberculosis and target it for xenophagy,” Cox said.

Parkin's Key Role in Fighting Bacteria

In both mouse and human macrophages infected with M. tuberculosis in the lab, Parkin played a key role in fighting the bacteria, Cox and colleagues found. In addition, genetically engineered mice lacking Parkin died when infected with M. tuberculosis, while mice with normal Parkin survived infection.

The involvement of Parkin in targeting both damaged mitochondria and infectious mycobacteria arose long ago in evolution, Cox argues. As part of the Nature study, the research team found that Parkin-deficient mice and flies – creatures quite distant from humans in evolutionary time – also are more sensitive than normal mice and flies to intracellular bacterial infections.

Looking back more than 1 billion years, Cox noted that mitochondria evolved from bacteria that were taken up by cells in a symbiotic relationship.

In the same way that the immune system recognizes infectious bacteria as foreign, Cox said, “The evolutionary origin of mitochondria from bacteria suggests that perhaps mitochondrial dysfunction triggers the recognition of a mitochondrian as non-self.”

Having now demonstrated the importance of Parkin in fighting mycobacterial infection, Cox has begun working with Shokat to find a way to boost Parkin activity against cell-invading bacteria. “We are exploring the possibility that small-molecule drugs could be developed to activate Parkin to better fight tuberculosis infection,” Cox said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
How Skeletal Stem Cells Form The Blueprint Of The Face
USC researchers discover that two types of molecular signals work to control where and when stem cells turn into facial cartilage.
Intestinal Worms Boost Immune System In A Surprising Way
EPFL researchers find that intestinal worm infections cause lymph nodes to produce more immune cells as well as grow in size.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Breast Milk Hormones Impact Bacteria In Infants’ Guts
Intestinal microbiome of children born to obese mothers significantly different from those born to mothers of healthy weight, CU Anschutz researchers find.
Newborn Screening Test Developed For Rare, Deadly Neurological Disorder
Scientists have developed a new dried blood spot screening test for Niemann-Pick type C, with goal to speed diagnosis and treatment.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
New Method Allows First Look At Embryo Implantation
Researchers at The Rockefeller University develop a method that shows the molecular and cellular processes that occur up to day 14 after fertilization.
Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!