Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Tuberculosis and Parkinson’s Disease Linked by Unique Protein

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
UCSF researchers seek way to boost protein to fight both diseases.

A protein at the center of Parkinson’s disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to a UC San Francisco-led research team.

The protein, named Parkin, already is the focus of intense investigation in Parkinson’s disease, in which its malfunction is associated with a loss of nerve cells. UCSF microbiologist and tuberculosis expert Jeffery Cox, PhD, and his colleagues now report that Parkin also acts on tuberculosis, triggering destruction of the bacteria by immune cells known as macrophages. Results appeared online on Sept. 4 in the journal Nature.

The finding suggests that disease-fighting strategies already under investigation in pre-clinical studies for Parkinson’s disease might also prove useful in fighting tuberculosis, according to Cox. Cox is investigating ways to ramp up Parkin activity in mice infected with tuberculosis using a strategy similar to one being explored by his UCSF colleague Kevan Shokat, PhD, as a way to ward off neurodegeneration in Parkinson’s disease.

Globally, tuberculosis kills 1.4 million people each year, spreading from person to person through the air. Parkinson’s disease, the most common neurodegenerative movement disorder, also affects millions of mostly elderly people worldwide.

Variations of Parkin Associated with Increased Susceptibility to Tuberculosis

Cox homed in on the enzyme Parkin as a common element in Parkinson’s and tuberculosis through his investigations of how macrophages engulf and destroy bacteria. In a sense, the macrophage — which translates from Greek as "big eater” — gobbles down foreign bacteria, through a process scientists call xenophagy.

Mycobacterium tuberculosis, along with a few other types of bacteria, including Salmonella and leprosy-causing Mycobacterium leprae, are different from other kinds of bacteria in that, like viruses, they need to get inside cells to mount a successful infection.

The battle between macrophage and mycobacterium can be especially intense. M. tuberculosis invades the macrophage, but then becomes engulfed in a sac within the macrophage that is pinched off from the cell’s outer membrane. The bacteria often escape this intracellular jail by secreting a protein that degrades the sac, only to be targeted yet again by molecular chains made from a protein called ubiquitin.

Previously, Cox discovered molecules that escort these chained mycobacteria to more secure confinement within compartments inside cells called lysosomes, where the bacteria are destroyed.

The cells of non-bacterial organisms ranging in complexity from baker’s yeast to humans also use a similar mechanism — called autophagy — to dispose of their own unneeded molecules or worn out cellular components. Among the most abundant and crucial of these components are the cell’s mitochondria, metabolic powerhouses that convert food molecules into a source of energy that the cell can readily use to carry out its everyday housekeeping chores, as well as its more specialized functions.

Like other cellular components, mitochondria can wear out and malfunction, and often require replacement. The process through which mitochondria are disposed of, called mitophagy, depends on Parkin.

Cox became curious about the enzyme when he learned that specific, naturally occurring variations in the Parkin gene, called polymorphisms, are associated with increased susceptibility to tuberculosis infection.

“Because of the commonalities between mitophagy and the xenophagy of intracellular mycobacteria, as well as the links between Parkin gene polymorphisms and increased susceptibility to bacterial infection in humans, we speculated that Parkin may also be recruited to M. tuberculosis and target it for xenophagy,” Cox said.

Parkin's Key Role in Fighting Bacteria

In both mouse and human macrophages infected with M. tuberculosis in the lab, Parkin played a key role in fighting the bacteria, Cox and colleagues found. In addition, genetically engineered mice lacking Parkin died when infected with M. tuberculosis, while mice with normal Parkin survived infection.

The involvement of Parkin in targeting both damaged mitochondria and infectious mycobacteria arose long ago in evolution, Cox argues. As part of the Nature study, the research team found that Parkin-deficient mice and flies – creatures quite distant from humans in evolutionary time – also are more sensitive than normal mice and flies to intracellular bacterial infections.

Looking back more than 1 billion years, Cox noted that mitochondria evolved from bacteria that were taken up by cells in a symbiotic relationship.

In the same way that the immune system recognizes infectious bacteria as foreign, Cox said, “The evolutionary origin of mitochondria from bacteria suggests that perhaps mitochondrial dysfunction triggers the recognition of a mitochondrian as non-self.”

Having now demonstrated the importance of Parkin in fighting mycobacterial infection, Cox has begun working with Shokat to find a way to boost Parkin activity against cell-invading bacteria. “We are exploring the possibility that small-molecule drugs could be developed to activate Parkin to better fight tuberculosis infection,” Cox said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos