Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cancer Researchers Discover Root Cause of Multiple Myeloma Relapse

Published: Thursday, September 12, 2013
Last Updated: Thursday, September 12, 2013
Bookmark and Share
Clinical researchers have discovered why multiple myeloma persistently escapes cure by an initially effective treatment.

The reason, explains research published online today in Cancer Cell, is intrinsic resistance found in immature progenitor cells that are the root cause of the disease – and relapse – says principal investigator Dr. Rodger Tiedemann, a hematologist specializing in multiple myeloma and lymphoma at the Princess Margaret, University Health Network (UHN). Dr. Tiedemann is also an Assistant Professor in the Faculty of Medicine, University of Toronto.

The research demonstrates that the progenitor cells are untouched by mainstay therapy that uses a proteasome inhibitor drug ("Velcade") to kill the plasma cells that make up most of the tumour. The progenitor cells then proliferate and mature to reboot the disease process, even in patients who appeared to be in complete remission.

"Our findings reveal a way forward toward a cure for multiple myeloma, which involves targeting both the progenitor cells and the plasma cells at the same time," says Dr. Tiedemann. "Now that we know that progenitor cells persist and lead to relapse after treatment, we can move quickly into clinical trials, measure this residual disease in patients, and attempt to target it with new drugs or with drugs that may already exist.

In tackling the dilemma of treatment failure, the researchers identified a cancer cell maturation hierarchy within multiple myeloma tumors and demonstrated the critical role of myeloma cell maturation in proteasome inhibitor sensitivity. The implication is clear for current drug research focused on developing new proteasome inhibitors: targeting this route alone will never cure multiple myeloma.

Dr. Tiedemann says: "If you think of multiple myeloma as a weed, then proteasome inhibitors such as Velcade are like a persnickety goat that eats the mature foliage above ground, producing a remission, but doesn't eat the roots, so that one day the weed returns."

The research team initially analyzed high-throughput screening assays of 7,500 genes in multiple myeloma cells to identify effectors of drug response, and then studied bone marrow biopsies from patients to further understand their results. The process identified two genes (IRE1 and XBP1) that modulate response to the proteasome inhibitor Velcade and the mechanism underlying the drug resistance that is the barrier to cure.

Dr. Tiedemann is part of the latest generation of cancer researchers at UHN building on the international legacy of Drs. James Till and the late Ernest McCulloch, who pioneered a new field of science in 1961 with their discovery that some cells ("stem cells") can self-renew repeatedly.

The science has continued to advance unabated ever since, and notably with key discoveries by Dr. John Dick of cancer stem cells first in leukemia and next in colon cancer.  Dr. Tiedemann's new findings underscore the clinical importance of understanding how cells are organized in the disease process.

The research was funded by the Canadian Cancer Society, the Molly and David Bloom Chair in Multiple Myeloma Research, the Arthur Macaulay Cushing Estate and The Princess Margaret Cancer Foundation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover New Approach to Treating Colorectal Cancer
Approach disarms the gene that drives self-renewal in stem cells that are the root cause of disease, resistance to treatment and relapse.
Thursday, December 05, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos