Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Team Brings Novel Therapeutic Cancer Vaccine to Human Clinical Trials

Published: Thursday, September 12, 2013
Last Updated: Thursday, September 12, 2013
Bookmark and Share
Phase I clinical trial of an implantable vaccine has begun with the aim to treat melanoma, the most lethal form of skin cancer.

The effort is the fruit of a new model of translational research being pursued at the Wyss Institute for Biologically Inspired Engineering at Harvard University that integrates the latest cancer research with bioinspired technology development. It was led by Wyss Core Faculty member David J. Mooney, Ph.D., who is also the Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS), and Wyss Institute Associate Faculty member Glenn Dranoff, M.D., who is co-leader of Dana-Farber Cancer Institute's Cancer Vaccine Center.

Most therapeutic cancer vaccines available today require doctors to first remove the patient's immune cells from the body, then reprogram them and reintroduce them back into the body. The new approach, which was first reported to eliminate tumors in mice in Science Translational Medicine in 2009, the year the Wyss Institute was launched, instead uses a small disk-like sponge about the size of a fingernail that is made from FDA-approved polymers. The sponge is implanted under the skin, and is designed to recruit and reprogram a patient's own immune cells "on site," instructing them to travel through the body, home in on cancer cells, then kill them.

The technology was initially designed to target cancerous melanoma in skin, but might have application to other cancers. In the preclinical study reported in Science Translational Medicine, 50 percent of mice treated with two doses of the vaccine -- mice that would have otherwise died from melanoma within about 25 days -- showed complete tumor regression.

"Our vaccine was made possible by combining a wide range of biomedical expertise that thrives in Boston and Cambridge," said Mooney, who specializes in the design of biomaterials for tissue engineering and drug delivery. "It reflects the bioinspired engineering savvy and technology development focus of engineers and scientists at the Wyss Institute and Harvard SEAS, as well as the immunological and clinical expertise of the researchers and clinicians at Dana-Farber and Harvard Medical School."

"This is expected to be the first of many new innovative therapies made possible by the Wyss Institute's collaborative model of translational research that will enter human clinical trials," said Wyss Founding Director Don Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and a Professor of Bioengineering at Harvard SEAS. "It validates our approach, which strives to move technologies into the clinical space much faster than would be possible in a traditional academic environment. It's enormously gratifying to see one of our first technologies take this giant leap forward."

The Wyss Institute comprises a consortium of researchers, engineers, clinicians, and staff with industrial and business development experience from the Wyss Institute and nine other collaborating institutions in Greater Boston.

"It is rare to get a new technology tested in the laboratory and moved into human clinical trials so quickly," said Dranoff, who is also a Professor of Medicine at Harvard Medical School, and Leader of the Dana-Farber/Harvard Cancer Center Program in Cancer Immunology. "We're beyond thrilled with the momentum, and excited about its potential."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Injectable 3-D Vaccines Could Fight Cancer
New findings show programmable biomaterials can be delivered using needle injection to induce an immune response and fight deadly diseases.
Wednesday, December 10, 2014
Harvard's Wyss Institute and AstraZeneca Announce Collaboration on Organs-on-Chips
Collaboration will leverage the Institute's Organs-on-Chips technologies to better predict safety of drugs in humans.
Wednesday, October 23, 2013
Programmable Glue Made of DNA Directs Tiny Gel Bricks to Self-Assemble
New method could help to reconnect injured organs or build functional human tissues from the ground up.
Thursday, September 12, 2013
Wyss Institute Awarded DARPA Contract to Further Advance Sepsis Therapeutic Device
DARPA gives award to further advance a blood-cleansing technology and help accelerate its translation to humans as a new type of sepsis therapy.
Thursday, March 28, 2013
Wyss Institute Models a Human Disease in an Organ-on-a-Chip
Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have mimicked pulmonary edema in a microchip lined by living human cells, as reported today in the journal Science Translation Medicine.
Friday, November 09, 2012
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos