Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Methylmercury-Producing Microbes More Widespread than Realized

Published: Monday, September 16, 2013
Last Updated: Monday, September 16, 2013
Bookmark and Share
Microbes that live in rice paddies, northern peat bogs and other previously unexpected environments are among the bacteria that can generate highly toxic methylmercury.

This finding, published in Environmental Science and Technology, explains why deadly methylated mercury is produced in areas where the neurotoxin’s presence has puzzled researchers for decades. Methylmercury — the most dangerous form of mercury — damages the brain and immune system and is especially harmful to developing embryos. Certain bacteria transform inorganic mercury into toxic methylmercury.

The discovery also validates the recent finding that two genes are essential for the methylation of mercury. Previously, only a narrow range of microbes were recognized as mercury methylators, said co-author Dwayne Elias of the Department of Energy laboratory’s Biosciences Division.

“We showed for the first time that many different types of bacteria are able to produce this potent neurotoxin,” Elias said. “The newly identified microbes include methane-producing organisms that live in rice paddies, anaerobic wastewater treatment plants, northern peat lands and possibly within our bodies.”

Elias and colleagues are testing a bacterium from the human intestine that they predict will also methylate mercury. Other bacteria able to transform inorganic into methylmercury include those used in biological dechlorination and metal treatment systems. All of these organisms are anaerobic, which means they grow in habitats without oxygen, including aquatic sediments and wetland soils.

By identifying these organisms, the researchers may have explained why methylmercury is accumulating in unexpected places. The discovery may also help clarify how methylmercury is produced in the open ocean, according to co-author Cindy Gilmour of the Smithsonian Environmental Research Center. Gilmour noted that the newly identified fermentative bacteria may be common in the low oxygen zones of the ocean where methylmercury production occurs. Ocean fish are the primary source of methylmercury in human diets worldwide.

Gilmour and Elias believe this work will have far-reaching implications for understanding the global mercury cycle. Scientists can now use the mercury-methylating organisms and their genes as global biomarkers and develop detection techniques to assess and eventually predict the extent of methylmercury production in a given environment.

“Based on the substantially expanded diversity of organisms and environments for methylation, a number of important habitats deserve further attention,” Gilmour said. “We now have a way to identify and track the abundance of mercury-methylating organisms within these environments, and we hope that the information can be used to devise strategies to minimize methylmercury production.”

Mercury is a global pollutant, released to the atmosphere through coal burning and other industrial uses, and through natural processes. Most of the harm comes from methylmercury bioaccumulation, which is the buildup of the element in tissue that occurs when moving up the food chain.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Neutron Analysis of HIV-1 Protease
Neutrons probe structure of enzyme critical to development of next-generation HIV drugs.
Tuesday, May 24, 2016
Novel Spectroscopy by Using Aberrations
Flaws inherent to electron microscopy used to create probes for performing novel atomic-level spectroscopy.
Friday, April 08, 2016
Cell-Free Protein Synthesis is Potential Lifesaver
Lives of soldiers and others injured in remote locations could be saved with a cell-free protein synthesis system developed at the Department of Energy’s Oak Ridge National Laboratory.
Monday, January 04, 2016
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Friday, December 18, 2015
Simulations Enhance Understanding of Protein Motion and Function
Supercomputing simulations at the Department of Energy’s Oak Ridge National Laboratory could change how researchers understand the internal motions of proteins that play functional, structural and regulatory roles in all living organisms.
Wednesday, December 02, 2015
Combining the Power of Mass Spectrometry & Microscopy
A tool that provides world-class microscopy and spatially resolved chemical analysis shows considerable promise for advancing a number of areas of study, including chemical science, pharmaceutical development and disease progression.
Monday, November 09, 2015
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Thursday, August 20, 2015
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Friday, June 19, 2015
ORNL Researchers Probe Chemistry, Topography and Mechanics with One Instrument
Scientists to explore thin films of phase-separated polymers.
Wednesday, May 06, 2015
Protein Shake-Up
Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer.
Saturday, March 28, 2015
Chestnuts Roasting On An Open Fire
ORNL work with scientists funded by The American Chestnut Foundation confirms increased blight-resistance of former forest giant.
Wednesday, January 07, 2015
'Zoomable' map of poplar proteins offers new view of bioenergy crop
An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production.
Thursday, January 31, 2013
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Zika’s Entry Points
Discovery shows Zika infection of neural progenitor cells occurs regardless of AXL production, which was thought to be the main vector for the virus.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Failings in Conveying Risks of Undercooked Meat
A study has found that restaurants do not communicate the risks of eating undercooked meats.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!