Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Histogen's Method of Generating Multipotent Stem Cells Receives US Patent

Published: Tuesday, September 17, 2013
Last Updated: Tuesday, September 17, 2013
Bookmark and Share
Histogen, Inc. has been issued patent 8,524,494, entitled "Low Oxygen Tension and bFGF Generates a Multipotent Stem Cell from a Fibroblast In Vitro" to the Company.

The issued patent covers Histogen's method of triggering the de-differentiation of fibroblast cells into multipotent stem cells through low oxygen and special culture conditions. The resulting multipotent cells naturally secrete a variety of soluble and insoluble molecules that are the basis for Histogen's products.

"Histogen's process is uniquely capable of harnessing all of the benefits and excitement of stem cell therapies without any of the ethical, safety or sourcing concerns," said Dr. Gail K. Naughton, Histogen CEO and Chairman of the Board. "Issuance of this patent adds great strength to our technology, and value to our partners and products."

Current stem cell-derived therapies utilize embryonic stem cells or genetically-manipulated induced pluripotent stem cells, both of which have an inherent ethical and scientific risk, and raise a number of regulatory issues. Still, enthusiasm continues to build around stem cells, both for their potential to address serious medical conditions as well as their aesthetic benefits for beauty and rejuvenation.

Through Histogen's technology process, the Company is uniquely able to begin with newborn fibroblasts cells, a safe, well-established and non-controversial cell source, and convert the cells into multipotent stem cells without genetic manipulation. The cells express key stem cell markers including Oct4, Sox2 and Nanog, and secrete a distinctive composition of growth factors and other proteins known to stimulate stem cells in the body, regenerate tissues, and promote scarless healing.

It is the soluble and insoluble compositions of multipotent proteins and growth factors which make up Histogen's products, with numerous applications. Histogen's lead product, Hair Stimulating Complex (HSC) has shown success in two Company-sponsored clinical trials as an injectable treatment for alopecia. In addition, the human multipotent cell conditioned media produced through Histogen's process can be found in the ReGenica line of skincare products, currently being distributed by Suneva Medical in partnership with Obagi Medical Products. Further indications of the materials currently being developed include oncology and orthopedics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hypoxia Induces Stem Cell Gene Expression, Protein Production and Cell Surface Markers
Histogen to present data at International Conference on Stem Cell Engineering
Tuesday, May 04, 2010
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!