Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Histogen's Method of Generating Multipotent Stem Cells Receives US Patent

Published: Tuesday, September 17, 2013
Last Updated: Tuesday, September 17, 2013
Bookmark and Share
Histogen, Inc. has been issued patent 8,524,494, entitled "Low Oxygen Tension and bFGF Generates a Multipotent Stem Cell from a Fibroblast In Vitro" to the Company.

The issued patent covers Histogen's method of triggering the de-differentiation of fibroblast cells into multipotent stem cells through low oxygen and special culture conditions. The resulting multipotent cells naturally secrete a variety of soluble and insoluble molecules that are the basis for Histogen's products.

"Histogen's process is uniquely capable of harnessing all of the benefits and excitement of stem cell therapies without any of the ethical, safety or sourcing concerns," said Dr. Gail K. Naughton, Histogen CEO and Chairman of the Board. "Issuance of this patent adds great strength to our technology, and value to our partners and products."

Current stem cell-derived therapies utilize embryonic stem cells or genetically-manipulated induced pluripotent stem cells, both of which have an inherent ethical and scientific risk, and raise a number of regulatory issues. Still, enthusiasm continues to build around stem cells, both for their potential to address serious medical conditions as well as their aesthetic benefits for beauty and rejuvenation.

Through Histogen's technology process, the Company is uniquely able to begin with newborn fibroblasts cells, a safe, well-established and non-controversial cell source, and convert the cells into multipotent stem cells without genetic manipulation. The cells express key stem cell markers including Oct4, Sox2 and Nanog, and secrete a distinctive composition of growth factors and other proteins known to stimulate stem cells in the body, regenerate tissues, and promote scarless healing.

It is the soluble and insoluble compositions of multipotent proteins and growth factors which make up Histogen's products, with numerous applications. Histogen's lead product, Hair Stimulating Complex (HSC) has shown success in two Company-sponsored clinical trials as an injectable treatment for alopecia. In addition, the human multipotent cell conditioned media produced through Histogen's process can be found in the ReGenica line of skincare products, currently being distributed by Suneva Medical in partnership with Obagi Medical Products. Further indications of the materials currently being developed include oncology and orthopedics.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hypoxia Induces Stem Cell Gene Expression, Protein Production and Cell Surface Markers
Histogen to present data at International Conference on Stem Cell Engineering
Tuesday, May 04, 2010
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!