Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH-Funded Study Suggests Brain is Hard-Wired for Chronic Pain

Published: Tuesday, September 17, 2013
Last Updated: Tuesday, September 17, 2013
Bookmark and Share
The results, published in the journal Pain, support the growing idea that the brain plays a critical role in chronic pain.

The structure of the brain may predict whether a person will suffer chronic low back pain, a concept that may lead to changes in the way doctors treat patients. The research was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. 

"We may have found an anatomical marker for chronic pain in the brain," said Vania Apkarian, Ph.D., a senior author of the study and professor of physiology at Northwestern University Feinberg School of Medicine in Chicago.

Chronic pain affects nearly 100 million Americans and costs the United States up to $635 billion per year to treat.  According to the Institute of Medicine, an independent research organization, chronic pain affects a growing number of people. 

"Pain is becoming an enormous burden on the public. The U.S. government recently outlined steps to reduce the future burden of pain through broad-ranging efforts, including enhanced research," said Linda Porter, Ph.D, the pain policy advisor at NINDS and a leader of NIH's Pain Consortium. "This study is a good example of the kind of innovative research we hope will reduce chronic pain which affects a huge portion of the population."

Low back pain represents about 28 percent of all causes of pain in the United States; about 23 percent of these patients suffer chronic, or long-term, low back pain.

Scientists have thought the cause of low back pain could be found at the site of injury.  However, recent studies suggest that the brain may be more involved with chronic pain. 

"Currently we know very little about why some patients suffer chronic low back pain," said Debra Babcock, M.D., Ph.D., a program director at NINDS.  "The earlier we detect pain will become chronic, the better we may be able to treat patients."

Dr. Apkarian and his colleagues addressed this by scanning the brains of 46 people who had low back pain for about three months before coming to the hospital but who had not had any pain for at least a year before.

The researchers scanned the subjects' brains and evaluated their pain with doctor's examinations and questionnaires four times over a period of one year.  About half of the subjects recovered at some time during the year; the other half had pain throughout, which the researchers categorized as persistent.

Previously, the Apkarian laboratory showed that the volume of grey matter in the brains of the same subjects who had persistent pain decreased over the same year.  Grey matter describes the area of the brain where the central bodies and branched antennae, or dendrites, of nerve cells reside.  They also showed that brain activity could be used to predict whether a subject recovered or experienced persistent pain.

In this study, the researchers used a scanning technique called diffusion tensor imaging (DTI) which measures the structure of white matter, the nerve cell wires, or axons, which connect brain cells in different parts of the brain.  They found a consistent difference in white matter between the subjects who recovered and the subjects who experienced pain throughout the year.

"Our results suggest that the structure of a person's brain may predispose one to chronic pain," said Dr. Apkarian.  

In agreement with this idea, the researchers also found that the white matter of subjects who had persistent pain looked similar to a third group of subjects known to suffer from chronic pain.  In contrast, the white matter of the subjects who recovered looked similar to that of healthy control subjects. 

To test this idea further, the researchers asked whether the white matter differences they saw during the initial brain scans predicted whether the subjects would recover or continue to experience pain.  They found white matter brain scans predicted at least 80 percent of the outcomes.

"We were surprised how robust the results were and amazed at how well the brain scans predicted persistence of low back pain," said Dr. Apkarian. "Prediction is the name of the game for treating chronic pain."

The nucleus accumbens and the medial prefrontal cortex are two brain regions thought to be involved with pain.  Further examination of the brain scans suggests that the white matter structure connecting these brains regions is different between the subjects who recovered and those who had persistent pain. 

"Our results support the notion that certain brain networks are involved with chronic pain," said Dr. Apkarian. "Understanding these networks will help us diagnose chronic pain better and develop more precise treatments."

This study was supported by a grant from NINDS (NS35115) and an anonymous foundation.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos