Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funding Boosts New Alzheimer’s Research

Published: Wednesday, September 18, 2013
Last Updated: Wednesday, September 18, 2013
Bookmark and Share
$45 million has been awarded to test early interventions and explore new approaches.

Researchers will test promising drugs aimed at preventing Alzheimer’s and identify and validate biological targets for novel therapies, with approximately $45 million in new funding from the National Institutes of Health. The initiative will support innovative new studies as part of an intensified national effort to find effective interventions for this devastating degenerative brain disease. 

The studies are among the first to be developed with direction from the 2012 NIH Alzheimer’s Disease Research Summit: Path to Treatment and Prevention and reflect research goals in the National Plan to Address Alzheimer’s Disease. Of the funding, $40 million is from an allocation from the Office of the NIH Director, Dr. Francis Collins, with additional funding from the National Institute on Aging (NIA), the lead Institute within NIH for Alzheimer’s research. 

“As many as 5 million Americans face the challenge of Alzheimer’s disease, which robs them of their memories, their independence, and ultimately, their lives,” Dr. Collins said. “We are determined, even in a time of constrained fiscal resources, to capitalize on exciting scientific opportunities to advance understanding of Alzheimer’s biology and find effective therapies as quickly as possible.” 

The clinical trials investigate possible ways to stop the progression of the disease. The translational research study awards are focused on identifying, characterizing and validating novel therapeutic targets.

“We know that Alzheimer’s-related brain changes take place years, even decades, before symptoms appear. That really may be the optimal window for drugs that delay progression or prevent the disease altogether,” said NIA Director Dr. Richard Hodes. “The clinical trials getting under way with these funds will test treatments in symptom-free volunteers at risk for the disease, or those in the very earliest stages — where we hope we can make the biggest difference.” 

Basic and genetic studies of the disease — from the abnormal proteins involved, to genetic influences, to inflammation and other Alzheimer’s - related brain changes—have advanced our knowledge. This has given us new insights into the biological underpinnings of this extremely complex disorder, Dr. Hodes said. 

Today’s awards support the following clinical trials. (Individual investigators can be contacted about when these studies will recruit participants.):

The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) Trial — Dr. Randall Bateman, Washington University, St. Louis, and co-investigators. $1.5 million in fiscal 2013, with the potential for $6 million over four years

The trial is testing new anti-amyloid-beta drug treatments in volunteers who have an inherited form of Alzheimer’s disease. While early-onset Alzheimer’s is rare, the knowledge gained from this study will be highly relevant to both early-and late-onset forms of the disease. This rare form can occur in people as early as their 30s. Amyloid plaques in the brain are a hallmark of Alzheimer’s and are thought to interfere with communication among brain cells, and anti-amyloid-beta therapies attempt to treat that process. Dr. Bateman will lead a team recruiting volunteers free of symptoms or in the earliest stages of the disorder.

The four-year trial, a multi-site international effort, will test three anti-amyloid-beta interventions: gantenerumab, solanezumab and a third, as yet undetermined, drug. This trial is also supported by the Alzheimer's Association® and the following companies: Roche, Lilly, Avid Radiopharmaceuticals and CogState. (NIA support: AG042791-01A1)

The Alzheimer's Prevention Initiative APOE4 Trial — Drs. Eric Reiman and Pierre Tariot, Banner Alzheimer’s Institute, Phoenix, and co-investigators. Fully funded in fiscal 2013 at $33.2 million 

This five-year prevention trial proposes to test an anti-amyloid drug in cognitively normal older volunteers who are at increased risk of developing late-onset Alzheimer’s because they inherited two copies of the APOE4 allele, the best known genetic risk for late-onset disease. The treatment, which has not yet been selected, will be tested in this randomized, controlled clinical trial at multiple sites. Participants will be assessed through cognitive tests, brain imaging and cerebrospinal fluid measurements to evaluate whether the drug impacts amyloid, other biological measurements and the memory and thinking problems related to the disease. The study will test the role of amyloid in the development of Alzheimer’s and will, through imaging and biomarker techniques, help identify faster ways to evaluate other promising prevention therapies in the future. It is anticipated that the study will also be supported with private funding. (NIA support: AG 046150-01)

Allopregnanolone Regenerative Therapeutic for MCI/Alzheimer’s: Dose Finding Phase 1 — Drs. Roberta Brinton and Lon Schneider, University of Southern California, Los Angeles. Fully funded in fiscal 2013 at $2.4 million

This early-phase clinical trial will evaluate over 12 weeks the safety and tolerability of increasing doses of allopregnanolone, a natural brain steroid, in treating mild cognitive impairment and Alzheimer’s disease. The drug has been shown to promote the generation of new brain cells, reduce amyloid levels, and restore cognitive function in pre-clinical animal testing. NIA has supported Dr. Brinton’s research over many years, including basic science grants to understand allopregnanolone’s mechanism of action in the brain, a drug development grant which included development of optimal dose and formulation, and support for pre-clinical toxicology studies. This support helped bring Dr. Brinton and colleagues to the stage of being able to go into a human Phase I trial. (NIA support: AG 046148-01) Studies focused on the identification and validation of novel therapeutic targets for Alzheimer’s disease include: 

Pathway Discovery, Validation and Compound Identification for Alzheimer’s Disease — Drs. Philip De Jager, of the Brigham and Women's Hospital, Broad Institute, Harvard University, Boston, and David Bennett, of Rush University Medical Center, Chicago. $1.7 million in fiscal 2013, with the potential of $7.9 million over five years

The study will discover, characterize and validate complex molecular networks and candidate genes that influence susceptibility to cognitive decline and Alzheimer’s disease. Using cutting-edge computational methods, this multi-disciplinary team will analyze rich clinical, pathological, genomic and other large-scale molecular data collected from over 1,000 volunteers from the Religious Order Study and the Rush Memory and Aging Project. 

Through a systems biology approach looking at biological interactions involved in the disease, the project ultimately seeks to identify compounds that normalize the activity of dysfunctional nodes in molecular networks and to identify drugs for several novel therapeutic targets. To accelerate the testing of promising therapies for future clinical trials, the researchers will focus on drugs that have already undergone Phase I testing in humans. (NIA support: AG 046152)

Integrative Biology Approach to Complexity of Alzheimer’s Disease — Dr. Eric Schadt of Icahn School of Medicine at Mount Sinai, New York City, and a team of investigators. $1.6 million in fiscal 2013, with the potential of $8.2 million over five years

This study will apply innovative analytical methods to large-scale molecular, cellular and clinical data from Alzheimer’s patients to construct biological network models and gain new insights into the complex mechanisms of the disease. Several cellular and animal models will be used to validate the actions of individual genes, as well as entire molecular networks predicted to drive the disease. The team will also employ a computational approach to test whether any existing drugs currently used for other conditions are capable of modulating the Alzheimer’s networks and can, therefore, be repurposed for Alzheimer’s treatment or prevention. (NIA support: AG 046170-01)

A Systems Approach to Targeting Innate Immunity in Alzheimer’s — Dr. Todd Golde, University of Florida, Gainesville, and colleagues. $1.6 million in fiscal 2013, with the potential of $7.7 million over five years

This study builds on the genetic and pathological evidence that the innate immune system, which provides immediate defense against infection, and brain inflammation have a significant role in Alzheimer’s disease. To identify and characterize novel therapeutic targets within the innate immune system, this study will use a systems biology approach to integrate genomic, gene expression, and pathological data from Alzheimer’s patients and Alzheimer’s mouse models and analyze them in novel ways. The team will test in animal models of the disease the validity and therapeutic potential of the key factors predicted by the analysis. This has the potential to speed the discovery and testing of Alzheimer’s disease prevention and treatment therapies by targeting the immune system. (NIA support: AG 046139-01).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Launches Early-Stage Yellow Fever Vaccine Trial
Researchers at NIH have begun an early-stage clinical trial of an investigational vaccine designed to protect against yellow fever virus.
Thursday, July 28, 2016
New Medication Shows Promise Against Liver Fibrosis in Animal Studies
Liver fibrosis is a gradual scarring of the liver that puts people at risk for progressive liver disease and liver failure.
Thursday, July 28, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Wednesday, July 27, 2016
Uncovering Rhinovirus C Structure
Researchers have determined the structure of rhinovirus C. Their findings may aid the development of antiviral therapies and vaccines.
Wednesday, July 27, 2016
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Monday, July 25, 2016
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Saturday, July 23, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
Brain Circuits Helps People Cope With Stress
Researchers at NIH have identified brain patterns in humans that appear to underlie “resilient coping,” to stress that help some people handle stressful situations better than others.
Wednesday, July 20, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Use it or Lose it: Visual Activity Regenerates Links Between Eye, Brain
The mouse study is first to show visual stimulation helps re-wire visual system and partially restores sight.
Tuesday, July 12, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
NIH-Funded Center to Study Inefficiencies in Clinical Trials
Researchers at the Duke Clinical Research Institute (DCRI) and Vanderbilt University Medical Center (VUMC) have received a major federal grant to study how multisite clinical trials of new drugs and therapies in children and adults can be conducted more rapidly and efficiently.
Thursday, July 07, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
NIH Launches Early-Stage Yellow Fever Vaccine Trial
Researchers at NIH have begun an early-stage clinical trial of an investigational vaccine designed to protect against yellow fever virus.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!