Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

DNA Damage may Cause ALS

Published: Thursday, September 19, 2013
Last Updated: Thursday, September 19, 2013
Bookmark and Share
New study finds link between neurons’ inability to repair DNA and neurodegeneration.

Amyotrophic lateral sclerosis (ALS) — also known as Lou Gehrig’s disease — is a neurodegenerative disease that destroys the neurons that control muscle movement. There is no cure for ALS, which kills most patients within three to five years of the onset of symptoms, and about 5,600 new cases are diagnosed in the United States each year.

MIT neuroscientists have found new evidence that suggests that a failure to repair damaged DNA could underlie not only ALS, but also other neurodegenerative disorders such as Alzheimer’s disease. These findings imply that drugs that bolster neurons’ DNA-repair capacity could help ALS patients, says Li-Huei Tsai, director of MIT’s Picower Institute for Learning and Memory and senior author of a paper describing the ALS findings in the Sept. 15 issue of Nature Neuroscience.

Neurons are some of the longest-living cells in the human body. While other cells are frequently replaced, our neurons are generally retained throughout our lifetimes. Consequently, neurons can accrue a lot of DNA damage and are especially vulnerable to its effects.

“Our genome is constantly under attack and DNA strand breaks are produced all the time. Fortunately, they are not a worry because we have the machinery to repair it right away. But if this repair machinery were to somehow become compromised, then it could be very devastating for neurons,” Tsai says.

Lead authors of the paper are Picower Institute postdoc Wen-Yuan Wang and research scientist Ling Pan.

Impaired repair

Tsai’s group has been interested in understanding the importance of DNA repair in neurodegenerative processes for several years. In a study published in 2008, they reported that DNA double-strand breaks precede neuronal loss in a mouse model that undergoes Alzheimer’s disease-like neurodegeneration and identified a protein, HDAC1, which prevents neuronal loss under these conditions.

HDAC1 is a histone deacetylase, an enzyme that regulates genes by modifying chromatin, which consists of DNA wrapped around a core of proteins called histones. HDAC1 activity normally causes DNA to wrap more tightly around histones, preventing gene expression. However, it turns out that cells, including neurons, also exploit HDAC1’s ability to tighten up chromatin to stabilize broken DNA ends and promote their repair.

In a paper published earlier this year in Nature Neuroscience, Tsai’s team reported that HDAC1 works cooperatively with another deacetylase called SIRT1 to repair DNA and prevent the accumulation of damage that could promote neurodegeneration.

When a neuron suffers double-strand breaks, SIRT1 migrates within seconds to the damaged sites, where it soon recruits HDAC1 and other repair factors. SIRT1 also stimulates the enzymatic activity of HDAC1, which allows the broken DNA ends to be resealed.

SIRT1 itself has recently gained notoriety as the protein that promotes longevity and protects against diseases including diabetes and Alzheimer’s disease, and Tsai’s group believes that its role in DNA repair contributes significantly to the protective effects of SIRT1.

In an attempt to further unveil other partners that work with HDAC1 to repair DNA, Tsai and colleagues stumbled upon a protein called Fused In Sarcoma (FUS). This finding was intriguing, Tsai says, because the FUS gene is one of the most common sites of mutations that cause inherited forms of ALS.

The MIT team found that FUS appears at the scene of DNA damage very rapidly, suggesting that FUS is orchestrating the repair response. One of its roles is to recruit HDAC1 to the DNA damage site. Without it, HDAC1 does not appear and the necessary repair does not occur. Tsai believes that FUS may also be involved in sensing when DNA damage has occurred.

Linking mutation and disease

At least 50 mutations in the FUS gene have been found to cause ALS. The majority of these mutations occur in two sections of the FUS protein. The MIT team mapped the interactions between FUS and HDAC1 and found that these same two sections of the FUS protein bind to HDAC1.

They also generated four FUS mutants that are most commonly seen in ALS patients. When they replaced the normal FUS with these mutants, they found that the interaction with HDAC1 was impaired and DNA damage was significantly increased. This suggests that those mutations prevent FUS from recruiting HDAC1 when DNA damage occurs, allowing damage to accumulate and eventually leading to ALS.

The researchers also analyzed brain tissue samples from ALS patients harboring FUS mutations and found that the amount of DNA damage in neurons in motor cortex was about double that found in normal brain tissue.

ALS patients with FUS mutations usually develop the disease early, before age 40. Only one of a person’s two copies of the FUS gene needs to be mutated to produce the disease. Tsai says that early in life, having one copy of the normal FUS gene may be enough to keep DNA repair going. “With aging, eventually the machinery is compromised and it contributes to neuronal demise,” she says.

The findings suggest that drugs that promote DNA damage repair, including activators of HDAC1 and SIRT1, could help combat the effects of ALS. SIRT1 activators are now being developed and have entered clinical trials to treat diabetes.

“There are numerous human inherited DNA-repair deficiency syndromes, many of which show neurodegeneration or other neurological defects. This new study now extends the spectrum of neuropathology caused by defects in DNA maintenance to include ALS,” says Peter McKinnon, a professor of genetics at St. Jude Children’s Research Hospital who was not part of the research team. “This study offers new avenues to explore in the quest for treatment strategies.”

Tsai’s lab is now studying whether there is a direct relationship between FUS and SIRT1. She also wants to determine whether the DNA damage that occurs in ALS patients after FUS is lost occurs in certain “hotspots” or is random. “I would speculate that there’s got to be hotspots in terms of where the DNA is damaged. But right now it remains speculation,” she says. “We really need to do the experiments and demonstrate whether that’s the case.”

The research was funded by the Simons Foundation, the National Institutes of Health, the Howard Hughes Medical Institute, the U.S. Department of Veteran Affairs, and the Muscular Dystrophy Association.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Monday, August 17, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Removing 62 Barriers to Pig–to–Human Organ Transplant in One Fell Swoop
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos