Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Program Explores the Use of Genomic Sequencing in Newborn Healthcare

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
Can sequencing of newborns' genomes provide useful medical information beyond what current newborn screening already provides?

Pilot projects to examine this important question are being funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health. Awards of $5 million to four grantees have been made in fiscal year 2013 under the Genomic Sequencing and Newborn Screening Disorders research program. The program will be funded at $25 million over five years, as funds are made available.

"Genomic sequencing has potential to diagnose a vast array of disorders and conditions at the very start of life," said Alan E. Guttmacher, M.D., director of NICHD.  "But the ability to decipher an individual's genetic code rapidly also brings with it a host of clinical and ethical issues, which is why it is important that this program explores the trio of technical, clinical, and ethical aspects of genomics research in the newborn period."

The awards will fund studies on the potential for genome and exome sequencing to expand and improve newborn health care. Genomic sequencing examines the complete DNA blueprint of the cells, and exome sequencing is a strategy to selectively sequence exons, the short stretches of DNA within our genomes that code for proteins.

"We are at a point now where powerful new genome sequencing technologies are making it faster and more affordable than ever to access genomic information about patients," said Eric D. Green, M.D., Ph.D., director of NHGRI. "This initiative will help us better understand how we can appropriately use this information to improve health and prevent disease in infants and children."

Programs currently screen almost all of the more than 4 million infants born in the United States each year. Until now, the testing of DNA has not been a first-line newborn screening method, but has been used to confirm the screening results of some disorders, such as cystic fibrosis.

Each of the new awards will consist of three parts: Genomic sequencing and analysis; research related to patient care; and the ethical, legal and social implications of using genomic information in the newborn period. Teams of researchers will work to further the understanding of disorders that appear in newborns and to improve treatments for these diseases using genomic information. Participation is voluntary for those research studies that involve returning results of DNA sequencing to families and physicians, and requires that families provide informed consent. Other research focuses on the analysis of de-identified data, which may be useful in developing and improving screening tests.

The four grantees are:

•    Brigham and Women's Hospital and Boston Children's Hospital, Boston
Principal Investigators: Robert Green, M.D., and Alan Beggs, Ph.D.

This research project will accelerate the use of genomics in pediatric medicine by creating and safely testing new methods for using information obtained from genomic sequencing in the care of newborns. It will test a new approach to newborn screening, in which genomic data are available as a resource for parents and doctors throughout infancy and childhood to inform health care.  A genetic counselor will provide the genomic sequencing information and newborn screening results to the families.  Parents will then be asked about the impact of receiving genomic sequencing results and if the information was useful to them.  Researchers will try to determine if the parents respond to receiving the genomic sequencing results differently if their newborns are sick and if they respond differently to receiving genomic sequencing results as compared to current newborn screening results. Investigators will also develop a process for reporting results of genomic sequencing to the newborns' doctors and investigate how they act on these results.
•    Children's Mercy Hospital - Kansas City, Mo.
Principal Investigator: Stephen Kingsmore, M.D.

Many newborns require care in a neonatal intensive care unit (NICU), and this group of newborns has a high rate of disability and death. Given the severity of illness, these newborns may have the most to gain from fast genetic diagnosis through the use of genomic sequencing. The researchers will examine the benefits and risks of using rapid genomic sequencing technology in this NICU population. They also aim to reduce the turnaround time for conducting and receiving genomic sequencing results to 50 hours, which is comparable to other newborn screening tests. The researchers will test if their methods increase the number of diagnoses or decrease the time it takes to reach a diagnosis in NICU newborns. They will also study if genomic sequencing changes the clinical care of newborns in the NICU.  Additionally, the investigators are interested in doctor and parent perspectives and will try to determine if parents' perception of the benefits and risks associated with the results of sequencing change over time.
•    University of California, San Francisco
Principal Investigator: Robert Nussbaum, M.D.

This pilot project will explore the potential of exome sequencing as a method of newborn screening for disorders currently screened for and others that are not currently screened for, but where newborns may benefit from screening. The researchers will examine the value of additional information that exome sequencing provides to existing newborn screening that may lead to improved care and treatment. Additionally, the researchers will explore parents' interest in receiving information beyond that typically available from newborn screening tests. The research team also intends to develop a participant protection framework for conducting genomic sequencing during infancy and will explore legal issues related to using genome analysis in newborn screening programs. Together, these studies have the potential to provide public health benefit for newborns and research-based information for policy makers.
•    University of North Carolina at Chapel Hill
Principal Investigators: Cynthia Powell, M.D., M.S., and Jonathan Berg, M.D., Ph.D.

In this pilot project, researchers will identify, confront and overcome the challenges that must be met in order to implement genomic sequencing technology to a diverse newborn population. The researchers will sequence the exomes of healthy infants and infants with known conditions such as phenylketonuria, cystic fibrosis or other disorders involving metabolism. Their goal is to help identify the best ways to return results to doctors and parents. The investigators will explore the ethical, legal and social issues involved in helping doctors and parents make informed decisions, and develop best practices for returning results to parents after testing. The researchers will also develop a tool to help parents understand what the results mean and examine extra challenges that doctors may face as this new technology is used. This study will place a special emphasis on including multicultural families.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NHGRI to Develop Revolutionary Technologies for Exploring Genome Function
NHGRI has awarded 10 grants, totaling $10.5 million, to develop revolutionary technologies that will help researchers identify millions of genomic elements that play a role in determining what genes are expressed and at what levels in different cells.
Monday, April 30, 2012
Expansion of Genome Research will Benefit Two Boston-area Research Centers
Federal health officials announced an expanded investment in understanding the genetic underpinnings of disease, and two Boston-area institutions will share in the funding to do basic research and answer emerging questions about the social, ethical, and financial repercussions of using genomics in standard medicine.
Wednesday, December 07, 2011
NIH Researchers Identify Genetic Elements Influencing the Risk of Type 2 Diabetes
Researchers have claimed to capture the most comprehensive snapshot to date of DNA regions that regulate genes in human pancreatic islet cells.
Wednesday, November 03, 2010
NHGRI Funds Development of Third Generation DNA Sequencing Technologies
More than $18 million in grants to spur the development of a third generation of DNA sequencing technologies announced by NHGRI.
Tuesday, September 21, 2010
NHGRI Names new Chief of Genome Technology Branch
Lawrence Brody to lead group recognized for applying Genome Science to advance studies of health and disease.
Tuesday, April 06, 2010
NHGRI Launches Online Genomics Center for Educators of Nurses, Physician Assistants
New genomic paves way for more individualized approaches to detect, treat and prevent many diseases.
Tuesday, March 02, 2010
Scientists Map Genetic Regulatory Elements for the Heart
Computational model can be used to identify regulatory elements for other organs, tissues.
Thursday, February 18, 2010
Researchers Discover First Genes for Stuttering
Findings suggest common speech problem, in some cases, may actually be an inherited metabolic disorder.
Thursday, February 11, 2010
NHGRI Launches Improved Online Talking Glossary of Genetic Terms
The glossary contains several new features that allow the user to dive in and see genetic concepts in action at the cellular level.
Monday, October 26, 2009
Study Conclusively Ties Rare Disease Gene to Parkinson's
Risk of Parkinson's disease is five times greater for Gaucher Disease carriers.
Friday, October 23, 2009
Researchers Uncover Genetic Variants Linked to Blood Pressure in African- Americans
Findings may point to new avenues for treatment and prevention of hypertension.
Friday, July 17, 2009
Large-Scale Genetic Study Sheds New Light on Lung Cancer, Opens Door to Individualized Treatment Strategies
A multi-institution team has reported results of the largest effort to date to chart the genetic changes involved in lung adenocarcinoma.
Monday, November 03, 2008
NHGRI Seeks DNA Sequencing Technologies Fit for Routine Laboratory and Medical Use
The Institute has awarded more than $20 million in grants to develop inexpensive sequencing technologies to sequence a person's DNA as a routine part of biomedical research.
Monday, August 25, 2008
Duck-Billed Platypus Genome Sequence Published
Scientists publish the first analysis of the genome sequence of the duck-billed platypus, revealing clues about how genomes were organized during the early evolution of mammals.
Thursday, May 08, 2008
Researchers Produce First Sequence Map of Large-Scale Structural Variation in Human Genome
The work, published in the journal "Nature", provides a starting point to examine how such DNA variation contributes to human health and disease.
Thursday, May 01, 2008
Scientific News
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos