Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Versatile Proteins Could be New Target for Alzheimer’s Drugs

Published: Monday, September 23, 2013
Last Updated: Sunday, September 22, 2013
Bookmark and Share
NIH-funded discovery began with asking how the brain learns to see.

A class of proteins that controls visual system development in the young brain also appears to affect vulnerability to Alzheimer’s disease in the aging brain.

The proteins, which are found in humans and mice, join a limited roster of molecules that scientists are studying in hopes of finding an effective drug to slow the disease process.

“People are just beginning to look at what these proteins do in the brain. While more research is needed, these proteins may be a brand new target for Alzheimer’s drugs,” said Carla Shatz, Ph.D., the study’s lead investigator.

Dr. Shatz is a professor of biology and neurobiology at Stanford University in California, and the director of Stanford's interdisciplinary biosciences program, BioX.

She and her colleagues report that LilrB2 (pronounced “leer-bee-2”) in humans and PirB (“peer-bee”) in mice can physically partner with beta-amyloid, a protein fragment that accumulates in the brain during Alzheimer’s disease. This in turn triggers a harmful chain reaction in brain cells.

In a mouse model of Alzheimer’s, depleting PirB in the brain prevented the chain reaction and reduced memory loss.

The research was funded in part by the National Eye Institute, the National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), all part of the National Institutes of Health. It is reported in the Sept. 20 issue of Science.

“These findings provide valuable insight into Alzheimer’s, a complex disorder involving the abnormal build-up of proteins, inflammation and a host of other cellular changes,” said Neil Buckholtz, Ph.D., director of the neuroscience division at NIA.

Buckholtz continued, “Our understanding of the various proteins involved, and how these proteins interact with each other, may one day result in effective interventions that delay, treat or even prevent this dreaded disease.”

Alzheimer's disease is the most common cause of dementia in older adults, and affects as many as 5 million Americans.

Large clumps - or plaques - of beta-amyloid and other proteins accumulate in the brain during Alzheimer’s, but many researchers believe the disease process starts long before the plaques appear.

Even in the absence of plaques, beta-amyloid has been shown to cause damage to brain cells and the delicate connections between them.

Dr. Shatz’s discovery took a unique path. She is a renowned neuroscientist, but Alzheimer’s disease is not her focus area. For decades, she has studied plasticity - the brain’s capacity to learn and adapt - focusing mostly on the visual system.

“Dr. Shatz has always been a leader in the field of plasticity, and now she’s taken yet another innovative step - giving us new insights into the abnormal plasticity that occurs in Alzheimer’s disease,” said Michael Steinmetz, Ph.D., a program director at NEI.

Steinmetz continued, “These findings rest squarely on basic research into the development of the visual system.” NEI has funded Dr. Shatz for more than 35 years.

During development, the eyes compete to connect within a limited territory of the brain - a process known as ocular dominance plasticity. The competition takes place during a limited time in early life. If visual experience through one eye is impaired during that time - for example, by a congenital cataract (present from birth) - it can permanently lose territory to the other eye.

“Ocular dominance is a classic example of how a brain circuit can change with experience,” Dr. Shatz said. “We’ve been trying to understand it at a molecular level for a long time.”

Her search eventually led to PirB, a protein on the surface of nerve cells in the mouse brain. She discovered that mice without the gene for PirB have an increase in ocular dominance plasticity.

In adulthood, when the visual parts of their brains should be mature, the connections there are still flexible. This established PirB as a “brake on plasticity” in the healthy brain, Dr. Shatz said.

It wasn’t long before she began to wonder if PirB might also put a brake on plasticity in Alzheimer’s disease. In the current study, she pursued that question with Taeho Kim, Ph.D., a postdoctoral fellow in her lab, and Christopher M. William, M.D., Ph.D., a neuropathology fellow at Massachusetts General Hospital in Boston. Bradley Hyman, M.D., Ph.D., a professor of neurology at Mass General, was a collaborator on the project.

First, the team repeated the genetic experiment that Dr. Shatz had done in normal mice - but this time, they deleted the PirB gene in the Alzheimer’s mice. By about nine months of age, these mice typically develop learning and memory problems. But that didn’t happen in the absence of PirB.

Next, the researchers began thinking about how PirB might fit into the Alzheimer’s disease process, and particularly how it might interact with beta-amyloid. Dr. Kim theorized that since PirB resides on the surface of nerve cells, it might act as a binding site - or receptor - for beta-amyloid. Indeed, he found that PirB binds tightly to beta-amyloid, especially to tiny clumps of it that are believed to ultimately grow into plaques.

Beta-amyloid is known to weaken synapses - the connections between nerve cells. The researchers found that PirB appears to be an accomplice in this process. Without PirB, synapses in the mouse brain were resistant to the effects of beta-amyloid. Other experiments showed that binding between PirB and beta-amyloid can trigger a cascade of harmful reactions that can lead to the breakdown of synapses.

Although PirB is a mouse protein, humans have a closely related protein called LilrB2. The researchers found that this protein also binds tightly to beta-amyloid. By examining brain tissue from people with Alzheimer’s disease, they also found evidence that LilrB2 may trigger the same harmful reactions that PirB can trigger in the mouse brain.

“These are novel results, and direct interaction between beta-amyloid and PirB-related proteins opens up welcome avenues for investigating new drug targets for Alzheimer’s disease,” said Roderick Corriveau, Ph.D., a program director at NINDS.

Dr. Shatz said she hopes to interest other researchers to work on developing drugs to block PirB and LilrB2. Currently, no drugs treat the underlying causes of Alzheimer’s disease.

Most of the interventions that have reached clinical testing are designed to clear away beta-amyloid. To date, only two other beta-amyloid receptors (PrP-C and EphB2) have been found and are being pursued as drug targets.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!