Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Versatile Proteins Could be New Target for Alzheimer’s Drugs

Published: Monday, September 23, 2013
Last Updated: Sunday, September 22, 2013
Bookmark and Share
NIH-funded discovery began with asking how the brain learns to see.

A class of proteins that controls visual system development in the young brain also appears to affect vulnerability to Alzheimer’s disease in the aging brain.

The proteins, which are found in humans and mice, join a limited roster of molecules that scientists are studying in hopes of finding an effective drug to slow the disease process.

“People are just beginning to look at what these proteins do in the brain. While more research is needed, these proteins may be a brand new target for Alzheimer’s drugs,” said Carla Shatz, Ph.D., the study’s lead investigator.

Dr. Shatz is a professor of biology and neurobiology at Stanford University in California, and the director of Stanford's interdisciplinary biosciences program, BioX.

She and her colleagues report that LilrB2 (pronounced “leer-bee-2”) in humans and PirB (“peer-bee”) in mice can physically partner with beta-amyloid, a protein fragment that accumulates in the brain during Alzheimer’s disease. This in turn triggers a harmful chain reaction in brain cells.

In a mouse model of Alzheimer’s, depleting PirB in the brain prevented the chain reaction and reduced memory loss.

The research was funded in part by the National Eye Institute, the National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), all part of the National Institutes of Health. It is reported in the Sept. 20 issue of Science.

“These findings provide valuable insight into Alzheimer’s, a complex disorder involving the abnormal build-up of proteins, inflammation and a host of other cellular changes,” said Neil Buckholtz, Ph.D., director of the neuroscience division at NIA.

Buckholtz continued, “Our understanding of the various proteins involved, and how these proteins interact with each other, may one day result in effective interventions that delay, treat or even prevent this dreaded disease.”

Alzheimer's disease is the most common cause of dementia in older adults, and affects as many as 5 million Americans.

Large clumps - or plaques - of beta-amyloid and other proteins accumulate in the brain during Alzheimer’s, but many researchers believe the disease process starts long before the plaques appear.

Even in the absence of plaques, beta-amyloid has been shown to cause damage to brain cells and the delicate connections between them.

Dr. Shatz’s discovery took a unique path. She is a renowned neuroscientist, but Alzheimer’s disease is not her focus area. For decades, she has studied plasticity - the brain’s capacity to learn and adapt - focusing mostly on the visual system.

“Dr. Shatz has always been a leader in the field of plasticity, and now she’s taken yet another innovative step - giving us new insights into the abnormal plasticity that occurs in Alzheimer’s disease,” said Michael Steinmetz, Ph.D., a program director at NEI.

Steinmetz continued, “These findings rest squarely on basic research into the development of the visual system.” NEI has funded Dr. Shatz for more than 35 years.

During development, the eyes compete to connect within a limited territory of the brain - a process known as ocular dominance plasticity. The competition takes place during a limited time in early life. If visual experience through one eye is impaired during that time - for example, by a congenital cataract (present from birth) - it can permanently lose territory to the other eye.

“Ocular dominance is a classic example of how a brain circuit can change with experience,” Dr. Shatz said. “We’ve been trying to understand it at a molecular level for a long time.”

Her search eventually led to PirB, a protein on the surface of nerve cells in the mouse brain. She discovered that mice without the gene for PirB have an increase in ocular dominance plasticity.

In adulthood, when the visual parts of their brains should be mature, the connections there are still flexible. This established PirB as a “brake on plasticity” in the healthy brain, Dr. Shatz said.

It wasn’t long before she began to wonder if PirB might also put a brake on plasticity in Alzheimer’s disease. In the current study, she pursued that question with Taeho Kim, Ph.D., a postdoctoral fellow in her lab, and Christopher M. William, M.D., Ph.D., a neuropathology fellow at Massachusetts General Hospital in Boston. Bradley Hyman, M.D., Ph.D., a professor of neurology at Mass General, was a collaborator on the project.

First, the team repeated the genetic experiment that Dr. Shatz had done in normal mice - but this time, they deleted the PirB gene in the Alzheimer’s mice. By about nine months of age, these mice typically develop learning and memory problems. But that didn’t happen in the absence of PirB.

Next, the researchers began thinking about how PirB might fit into the Alzheimer’s disease process, and particularly how it might interact with beta-amyloid. Dr. Kim theorized that since PirB resides on the surface of nerve cells, it might act as a binding site - or receptor - for beta-amyloid. Indeed, he found that PirB binds tightly to beta-amyloid, especially to tiny clumps of it that are believed to ultimately grow into plaques.

Beta-amyloid is known to weaken synapses - the connections between nerve cells. The researchers found that PirB appears to be an accomplice in this process. Without PirB, synapses in the mouse brain were resistant to the effects of beta-amyloid. Other experiments showed that binding between PirB and beta-amyloid can trigger a cascade of harmful reactions that can lead to the breakdown of synapses.

Although PirB is a mouse protein, humans have a closely related protein called LilrB2. The researchers found that this protein also binds tightly to beta-amyloid. By examining brain tissue from people with Alzheimer’s disease, they also found evidence that LilrB2 may trigger the same harmful reactions that PirB can trigger in the mouse brain.

“These are novel results, and direct interaction between beta-amyloid and PirB-related proteins opens up welcome avenues for investigating new drug targets for Alzheimer’s disease,” said Roderick Corriveau, Ph.D., a program director at NINDS.

Dr. Shatz said she hopes to interest other researchers to work on developing drugs to block PirB and LilrB2. Currently, no drugs treat the underlying causes of Alzheimer’s disease.

Most of the interventions that have reached clinical testing are designed to clear away beta-amyloid. To date, only two other beta-amyloid receptors (PrP-C and EphB2) have been found and are being pursued as drug targets.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Scientific News
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos