Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellular Switch Controls Growth of Brain Tumor Cells

Published: Tuesday, September 24, 2013
Last Updated: Tuesday, September 24, 2013
Bookmark and Share
Researchers investigate that the protein RIP1 acts as a mediator of brain tumor cell survival.

Researchers at UT Southwestern Medical Center have identified a cellular switch that potentially can be turned off and on to slow down, and eventually inhibit the growth of the most commonly diagnosed and aggressive malignant brain tumor.

Findings of their investigation show that the protein RIP1 acts as a mediator of brain tumor cell survival, either protecting or destroying cells.

Researchers believe that the protein, found in most glioblastomas, can be targeted to develop a drug treatment for these highly malignant brain tumors. The study was published online Aug. 22 in Cell Reports.

“Our study identifies a new mechanism involving RIP1 that regulates cell division and death in glioblastomas,” said senior author Dr. Amyn Habib, associate professor of neurology and neurotherapeutics at UT Southwestern, and staff neurologist at VA North Texas Health Care System.

Dr. Habib continued, “For individuals with glioblastomas, this finding identified a target for the development of a drug treatment option that currently does not exist.”

In the study, researchers used animal models to examine the interactions of the cell receptor EGFRvIII and RIP1. Both are used to activate NFκB, a family of proteins that is important to the growth of cancerous tumor cells.

When RIP1 is switched off in the experimental model, NFκB and the signaling that promotes tumor growth is also inhibited.

Furthermore, the findings show that RIP1 can be activated to divert cancer cells into a death mode so that they self-destruct.

According to the American Cancer Society, about 30 percent of brain tumors are gliomas, a fast-growing, treatment-resistant type of tumor that includes glioblastomas, astrocytomas, oligodendrogliomas, and ependymomas.

In many cases, survival is tied to novel clinical trial treatments and research that will lead to drug development.

The Department of Neurology and Neurotherapeutics at UT Southwestern is ranked in the top 20 in the nation, according to U.S. News & World Report.

UT Southwestern physicians routinely deal with the most difficult neurology cases referred from around the region, state, and nation.

The research was conducted with support from the National Institutes of Health, NASA, and the Cancer Prevention and Research Institute of Texas.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Boosting Gut Bacteria Defense System May Lead to Better Treatments
Life-threatening bloodstream infections reversed by enhancing a specific immune defense response.
Tuesday, June 09, 2015
Immunity Enzyme Defends Against Tuberculosis Infection
Study shows that cGAS enzyme is essential for defense against the tuberculosis bacteria.
Wednesday, June 03, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
UT Southwestern’s Dr. Philipp Scherer Receive Banting Medal
Dr. Scherer will receive the prestigious Medal for diabetes research.
Friday, May 08, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Scherer to Receive Banting Medal for Diabetes Research
Medal recognizes significant, long-term contributions to the understanding, treatment, or prevention of diabetes.
Thursday, April 30, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!