Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Watching Tumors Burst Through a Blood Vessel

Published: Tuesday, September 24, 2013
Last Updated: Tuesday, September 24, 2013
Bookmark and Share
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.

Cancer cells metastasize in several stages — first by invading surrounding tissue, then by infiltrating and spreading via the circulatory system. Some circulating cells work their way out of the vascular network, eventually forming a secondary tumor.

While the initial process by which cancer cells enter the bloodstream — called intravasation — is well characterized, how cells escape blood vessels to permeate other tissues and organs is less clear. This process, called extravasation, is a crucial step in cancer metastasis.

Now researchers at MIT have developed a microfluidic device that mimics the flow of cancer cells through a system of blood vessels. Using high-resolution time-lapse imaging, the researchers captured the moments as a cancer cell squeezes its way through a blood vessel wall into the surrounding extracellular matrix. The process is “highly dynamic,” as they write in a paper published in the journal Integrative Biology; a better understanding of it may help scientists identify therapies to prevent metastasis.

“Now that we have a model for extravasation, you can think about using it as a screen for drugs that could prevent it,” says Roger Kamm, the Cecil and Ida Green Distinguished Professor of Biology and Mechanical Engineering at MIT. “We could take circulating tumor cells from a patient and subject those cells to a handful of factors or drugs. That’s ultimately what we’d like to do, but in the process we’re learning a lot as we go along.”

Seeding blood vessels

As tumor cells make their way through the circulatory system, some “arrest,” or pause at a particular location, adhering to a blood vessel’s wall — the first stage of extravasation. Scientists have thought that this cell arrest occurs in one of two ways: A cell may send out sticky projections that grab onto the vessel lining, or it may be too big to pass through, literally becoming trapped within the vessel.

To investigate which possibility is more likely, the researchers grew a network of tiny blood vessels from a solution of human umbilical-cord endothelial cells. They injected a solution containing vascular cells into a small microfluidic device containing a reservoir of hydrogel, along with growth factors normally present in the developing circulatory system. Within days, an intricate system of microvessels took shape, with each about one millimeter long and 10 to 100 microns in diameter — dimensions similar to the body’s small capillaries.

The group then pumped tumor cells through the vascular network, using a line of breast cancer cells known to be particularly invasive. Using high-resolution confocal microscopy, the team watched as tumor cells flowed through the miniature circulatory system. They observed that the majority of cells that arrested along a vessel did so due to entrapment — that is, they simply became stuck.

A tumor cell finds a way out

With time-lapse images, the researchers took a closer look at the progression of events following cell arrest. Once a tumor cell becomes trapped, they observed that it sends out long, thin filaments that push against a vessel wall, eventually creating a small hole in the endothelial lining. More and more of the cell squeezes through as the holes give way, and eventually, even the cell’s nucleus — thought to be a relatively rigid, nondeformable structure — is able to escape.

To their surprise, the researchers found that the nucleus made it through the vessel wall earlier and more quickly than they anticipated, squeezing through in about 15 minutes — “a tiny chunk of the time it takes for this entire cell to extravasate,” Chen notes.

Interestingly, Chen points out, once a tumor cell has completely exited a blood vessel, the endothelium appears to heal itself, closing the gaps that the cell initially created. “That suggests that the endothelial barrier has some kind of active role in repairing itself after this invasion by the tumor cell,” Chen says.

In addition to observing the extravasation of single tumor cells, the group also looked at the behavior of cell clusters — two or more cancer cells that accumulate in a blood vessel. From their observations, the researchers found that almost 70 percent of cell clusters broke through a blood barrier, compared with less than 10 percent of single cells.

But some cells that make it out of the circulatory system may still fail to metastasize. To see whether a cell’s ability to extravasate correlates with its metastatic potential, the group compared the efficiency of extravasation of different cancer cell lines. The lines included breast cancer cells, cells from fibrosarcoma (a cancer of the connective tissue), and a line of nonmetastatic cancer cells.

Sure enough, the team observed that the most metastatic cells (fibrosarcoma cells) were also the most likely to extravasate, compared with breast cancer and nonmetastatic cells — a finding suggesting that targeting drugs to prevent extravasation may slow cancer metastasis.

Going forward, the group is looking into how likely a given cancer cell is to proliferate and aggregate with others once it has exited into the surrounding tissue. The researchers are modeling various tissues within the microfluidic platform, including bone, to study how cancer cells form the beginnings of a secondary tumor.

“Although this platform isn’t an in-vivo platform and obviously can’t capture all the aspects that happen in vivo, we’ve come a lot closer to creating an in-vitro platform that’s even more physiologically relevant, high-resolution and high-throughput than a lot of previous platforms,” Chen says.

Muhammad Zaman, an associate professor of biomedical engineering at Boston University, says that tumor intravasation is a major step in metastasis that has been poorly understood due to a lack of robust and scalable tools.

“The work by Kamm and co-workers has provided a highly innovative, controlled and robust system to analyze this key process in exquisite detail,” says Zaman, who was not involved in this research. “This significantly reduces costs with animal models, addresses issues seen in typical in-vitro cultures and, above all, provides quantitative detail.”

“The impact of this work will be profound,” Zaman adds. “I anticipate that both researchers and [pharmaceutical companies] will use this tool to characterize and analyze complex processes of tumor extravasation.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Thursday, September 29, 2016
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Hacking Microbes
Startup’s engineered yeast helps clients produce fragrances and flavors more efficiently.
Thursday, September 08, 2016
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Thursday, September 08, 2016
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Targeting Neglected Diseases
New enzyme-mapping advancement could help drug development for combating diseases in the developing world.
Wednesday, August 17, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!