Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Depletion of ‘Traitor’ Immune Cells Slows Cancer Growth in Mice

Published: Wednesday, September 25, 2013
Last Updated: Wednesday, September 25, 2013
Bookmark and Share
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.

Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy tries to stimulate a person’s own immune system to attack the cancer itself.

Now, scientists at the University of Washington have developed a strategy to slow tumor growth and prolong survival in mice with cancer by targeting and destroying a type of cell that dampens the body’s immune response to cancer. The researchers published their findings the week of Sept. 16 in the Proceedings of the National Academy of Sciences.

“We’re really enthusiastic about these results because they suggest an alternative drug target that could be synergistic with current treatments,” said co-author Suzie Pun, a UW associate professor of bioengineering.

Our immune system normally patrols for and eliminates abnormal cells. Macrophages are a type of helpful immune cell that can be converted to the “dark side” by signals they receive from a tumor. When inside a tumor, macrophages can switch from helping the immune system to suppressing the body’s immune response to cancer. Several studies show a correlation between the number of macrophages in tumor biopsies and poor prognosis for patients, Pun said.

The UW team developed a method to target and eliminate the cancer-supporting macrophages in mouse tumors. Researchers predict this strategy could be used along with current treatments such as chemotherapy for cancer patients.

“We think this would amplify cancer treatments and hopefully make them better,” Pun said.

Scientists have a strong understanding of the behavior of macrophages in tumors, but most current methods to remove them do away with all macrophages in the body indiscriminately instead of targeting only the harmful ones that live in tumors.

In this study, UW bioengineering doctoral student Maryelise Cieslewicz designed a method to find a specific amino-acid sequence – or a peptide – that binds only the harmful macrophages in tumors and ignores helpful ones in the bodies of mice. When this sequence was injected into mice with cancer, the research team found that the peptide collected in the macrophage cells within tumors, leaving alone other healthy organs.

Once they discovered they could deliver the peptide sequence to specific cells, the researchers attached another peptide to successfully kill the harmful macrophages without affecting other cells. The mice had slower tumor growth and better survival when treated with this material.

The research team plans to test this method with existing cancer drugs to hopefully boost the success of other treatments.

The peptide sequence that successfully bound to harmful macrophages in mice doesn’t bind to their counterparts in humans, Pun said, but the researchers expect soon to find a similar peptide that targets human cells. They plan to use this method to investigate treatments for other types of cancer, including breast and pancreatic cancers.

The Pun research team collaborated with the UW labs of Elaine Raines in pathology and André Lieber in medical genetics on this study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mislabelled Seafood May Be More Sustainable
Study finds mislabelling of seafood leads to more sustainable consumption as substituted fish are often more plentiful.
Wednesday, November 09, 2016
UW Gets NOAA Grant for Algal Bloom Forecasts
NOAA sponsored project brings academic, federal, state and tribal scientists to develop forecasts for toxic harmful algal blooms in the Pacific Northwest.
Wednesday, October 05, 2016
Microsatellites Linked to Cancer
DNA repeat stretches, called microsatellites, play a greater role in cancer progression and survival that previously thought.
Wednesday, October 05, 2016
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Thursday, September 29, 2016
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
Wednesday, September 21, 2016
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Tuesday, September 20, 2016
$13M Grant to Focus Ebola
The NIH have awarded $13 million toward research investigating ebola replication and interactions with the body.
Tuesday, September 20, 2016
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Friday, August 26, 2016
Drug Prospects from Open-Source Test
Researchers have identified compounds to pursue in treating and preventing parasite-borne illnesses such as malaria as well as cancer.
Tuesday, August 02, 2016
Are White Cells the Key to Better Malaria Vaccines?
A class of white cells that was previously thought to play a minor role in defence against malaria infection may be a potent weapon against the parasite.
Monday, August 01, 2016
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Monday, July 25, 2016
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
Friday, July 22, 2016
Mutations in DNA-Repair Gene Higher in Prostate Cancer
Men with aggressive prostate cancer have higher incidence of inherited DNA-repair gene mutations.
Friday, July 08, 2016
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Wednesday, June 22, 2016
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Thursday, May 26, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Sweet Tooth Science - Chocolate Antioxidants
Researchers develop a faster and cheaper method to test for antioxidants in chocolate.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!