Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxygen Starvation Regulates Fat Cells in Obesity

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
Studies of the effects of oxygen deprivation in the body fat of obese animals have revealed links with the regulation of fat cell generation.

Researchers at Kanazawa University have identified the role of the protein TIS7 in processes that regulate adipogenesis, whereby non-specialised cells become adipose or fat cells. They add, “TIS7 could be a target for the discovery and development of a drug useful for the treatment and therapy of obesity or a variety of obesity-related metabolic diseases including type-2 diabetes and atherosclerosis.”

Adipose tissue is essential for whole body homeostasis, storing excess energy and potentially a number of other physiological processes. Deregulation of these functions is found in obesity, prompting further study of the mechanisms behind white adipose tissue development.

Adipose tissue is poorly oxygenated in obese humans and animals. Poor oxygenation or ‘hypoxia’ has been linked to a number of diseases including heart and lung disorders, anemia, and circulation problems. There have also been reports indicating that the protein TIS7 is expressed in tissues following injuries, such as ischemia, stroke or muscle trauma. Yukio Yoneda and colleagues at the University of Kanazawa monitored TIS7 expression in vitro and found that it was drastically increased by hypoxic stress.

The researchers then compared mice fed different diets and found significant up-regulation of TIS7 in the white adipose tissue of mice fed a high fat diet. Following further studies of various aspects of adipogenesis and the role of hypoxia and TIS7, the researchers conclude, “It thus appears that TIS7 is a novel pivotal transcriptional regulator of hypoxia-induced repression of adipogenesis.” They add that further studies are needed to understand the exact mechanism underlying the up-regulation of TIS7 under hypoxia in cells prior to adipogenesis.

Publication and Affiliation

Yukari Nakamura 1, Eiichi Hinoi 1, Takashi Iezaki, Saya Takada, Syota Hashizume, Yoshifumi Takahata, Emiko Tsuruta, Satoshi Takahashi, Yukio Yoneda *

Repression of adipogenesis through promotion of Wnt/β-catenin signaling by TIS7 up-regulated in adipocytes under hypoxia. Biochimica et Biophysica Acta 1832 (2013) 1117–1128

1. Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School,Kanazawa, Ishikawa 920-1192, Japan

*corresponding author, e-mail address: yyoneda@p.kanazawa-u.ac.jp

1 These authors equally contributed to this work.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Liver Disease, Obesity Linked
Kanazawa University researchers find similarities in the impeded signalling between central insulin activity and glucose production in the liver for both obese mice and mice that have had the vagus nerve removed.
Wednesday, March 16, 2016
Chemical Synthesis: A Simple Technique for Highly Functionalized Compounds
Researchers at Kanazawa University have demonstrated a technique that allows direct functionalization of alkenes without the need for metallic reagents, photolysis or extreme reaction conditions.
Monday, September 30, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!