Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

How ‘Bad’ Cholesterol Causes Atherosclerosis in Humans: Stem cells play a Key Role

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
Study translates to humans a finding previously shown in lab animals that could lead to new therapy to use with statins or in place of them.

University at Buffalo translational researchers are developing a richer understanding of atherosclerosis in humans, revealing a key role for stem cells that promote inflammation.

The research was published last month in PLOS One. It extends to humans previous findings in lab animals by researchers at Columbia University that revealed that high levels of LDL (“bad”) cholesterol promote atherosclerosis by stimulating production of hematopoietic stem/progenitor cells (HSPC’s).

“Our research opens up a potential new approach to preventing heart attack and stroke, by focusing on interactions between cholesterol and the HSPCs,” says Thomas R. Cimato, MD, PhD, lead author on the PLOS One paper and assistant professor in the Department of Medicine in the UB School of Medicine and Biomedical Sciences.

He notes that the finding about the importance of these stem cells in atherosclerosis could lead to the development of a useful therapy in combination with statins, or one that could be used in place of statins in individuals who cannot tolerate them.

The study demonstrated for the first time in humans that high total cholesterol recruits stem cells from the bone marrow into the bloodstream, via increases in IL-17, which has been implicated in many chronic inflammatory diseases, including atherosclerosis. IL-17 boosts levels of granulocyte colony stimulating factor (GCSF), which releases stem cells from the bone marrow.

They also found that statins do reduce the levels of HSPCs in the blood but not every subject responded similarly, Cimato says.

“We’ve extrapolated to humans what other scientists previously found in mice about the interactions between LDL cholesterol and these HSPCs,” explains Cimato.

The demonstration that a finding in lab animals is equally relevant in humans is noteworthy, adds Cimato, a researcher in UB’s Clinical and Translational Research Center (CTRC).

“This is especially true with cholesterol studies,” he says, “because mice used for atherosclerosis studies have very low total cholesterol levels at baseline. We feed them very high fat diets in order to study high cholesterol but it isn’t easy to interpret what the levels in mice will mean in humans and you don’t know if extrapolating to humans will be valid.”

Cimato adds that the degree of increased LDL cholesterol in mouse studies is much higher than what is found in patients who come to the hospital with a heart attack or stroke.

“The fact that this connection between stem cells and LDL cholesterol in the blood that was found in mice also turns out to be true in humans is quite remarkable,” he says.

Cimato explains that making the jump from rodents with very high LDL cholesterol to humans required some creative steps, such as the manipulation of the LDL cholesterol levels of subjects through the use of three different kinds of statins.

The study involved monitoring for about a year a dozen people without known coronary artery disease who were on the statins for two-week periods separated by one-month intervals when they were off the drugs.

“We modeled the mechanism of how LDL cholesterol affects stem cell mobilization in humans,” says Cimato.

The UB researchers found that LDL cholesterol modulates the levels of stem cells that form neutrophils, monocytes and macrophages, the primary cell types involved in the formation of plaque and atherosclerosis.

The next step, he says, is to find out if HSPCs, like LDL cholesterol levels, are connected to cardiovascular events, such as heart attack and stroke.

Co-authors with Cimato are Beth A. Palka, senior research support specialist, Jennifer K. Lang, MD, cardiology fellow and Rebeccah F. Young, research scientist, all of the Department of Medicine and UB’s CTRC.

The research was funded by an American Heart Association Scientist Development Grant.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Technique for Studying Cellular Interfaces
The method, used to study cells involved in myelination, provides “a glimpse into the social life of cells” and boosts understanding of myelin diseases such as MS and Krabbe’s leukodystrophy.
Monday, September 21, 2015
E. Coli Can Be Transformed into Antibiotic Factories
Scientists have engineered E.coli to generate new varieties one of the most commonly used antibiotics, Erythromycin.
Wednesday, June 03, 2015
A Hybrid Vehicle That Delivers DNA
University at Buffalo researchers are developing new technology to improve DNA vaccines. The new transport system for DNA vaccines could help treat HIV, malaria, HPV and other major illnesses.
Thursday, November 27, 2014
Clues to Autoimmune Conditions are Revealed by Genomic Analysis of a Skin Disease
UB researchers’ findings about Pemphigus vulgaris reveal a novel protective mechanism in at-risk individuals who remain healthy.
Monday, September 30, 2013
A Protein's Role in Helping Cells Repair DNA Damage
A new study elucidates the role that a protein called TFIIB plays in supporting the activity of p53, a protein that helps suppress tumors.
Tuesday, November 06, 2012
Nanotechnology Identifies Peptide "Fingerprint" in both Forms of ALS
A nanospray emitter developed by University at Buffalo chemist has identified a common molecular signature in familial and sporadic forms of ALS.
Wednesday, September 05, 2007
Engineered Blood Vessels Function like Native Tissue
Researchers says that blood vessels that have been tissue-engineered from bone marrow adult stem cells may serve as a patient's own source of new blood vessels.
Wednesday, July 11, 2007
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos