Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Use Nanoparticles to Deliver Vaccines to Lungs

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
Particles that deliver vaccines directly to mucosal surfaces could defend against many infectious diseases.

Many viruses and bacteria infect humans through mucosal surfaces, such as those in the lungs, gastrointestinal tract and reproductive tract.

To help fight these pathogens, scientists are working on vaccines that can establish a front line of defense at mucosal surfaces.

Vaccines can be delivered to the lungs via an aerosol spray, but the lungs often clear away the vaccine before it can provoke an immune response. To overcome that, MIT engineers have developed a new type of nanoparticle that protects the vaccine long enough to generate a strong immune response - not only in the lungs, but also in mucosal surfaces far from the vaccination site, such as the gastrointestinal and reproductive tracts.

Such vaccines could help protect against influenza and other respiratory viruses, or prevent sexually transmitted diseases such as HIV, herpes simplex virus and human papilloma virus, says Darrell Irvine, an MIT professor of materials science and engineering and biological engineering and the leader of the research team. He is also exploring use of the particles to deliver cancer vaccines.

“This is a good example of a project where the same technology can be applied in cancer and in infectious disease. It’s a platform technology to deliver a vaccine of interest,” says Irvine, who is a member of MIT’s Koch Institute for Integrative Cancer Research and the Ragon Institute of Massachusetts General Hospital, MIT and Harvard University.

Irvine and colleagues describe the nanoparticle vaccine in the Sept. 25 issue of Science Translational Medicine. Lead authors of the paper are recent PhD recipient Adrienne Li and former MIT postdoc James Moon.

Sturdier vaccines
Only a handful of mucosal vaccines have been approved for human use; the best-known example is the Sabin polio vaccine, which is given orally and absorbed in the digestive tract. There is also a flu vaccine delivered by nasal spray, and mucosal vaccines against cholera, rotavirus and typhoid fever.

To create better ways of delivering such vaccines, Irvine and his colleagues built upon a nanoparticle they developed two years ago. The protein fragments that make up the vaccine are encased in a sphere made of several layers of lipids that are chemically “stapled” to one another, making the particles more durable inside the body.

“It’s like going from a soap bubble to a rubber tire. You have something that’s chemically much more resistant to disassembly,” Irvine says.

This allows the particles to resist disintegration once they reach the lungs. With this sturdier packaging, the protein vaccine remains in the lungs long enough for immune cells lining the surface of the lungs to grab them and deliver them to T cells. Activating T cells is a critical step for the immune system to form a memory of the vaccine particles so it will be primed to respond again during an infection.

Stopping the spread of infection
In studies of mice, the researchers found that HIV or cancer antigens encapsulated in nanoparticles were taken up by immune cells much more successfully than vaccine delivered to the lungs or under the skin without being trapped in nanoparticles.

HIV does not infect mice, so to test the immune response generated by the vaccines, the researchers infected the mice with a version of the vaccinia virus that was engineered to produce the HIV protein delivered by the vaccine.

Mice vaccinated with nanoparticles were able to quickly contain the virus and prevent it from escaping the lungs. Vaccinia virus usually spreads to the ovaries soon after infection, but the researchers found that the vaccinia virus in the ovaries of mice vaccinated with nanoparticles was undetectable, while substantial viral concentrations were found in mice that received other forms of the vaccine.

Mice that received the nanoparticle vaccine lost a small amount of weight after infection but then fully recovered, whereas the viral challenge was 100 percent lethal to mice who received the non-nanoparticle vaccine.

“Giving the vaccine at the mucosal surface in the nanocapsule form allowed us to completely block that systemic infection,” Irvine says.

The researchers also found a strong memory T cell presence at distant mucosal surfaces, including in the digestive and reproductive tracts. “An important caveat is that although immunity at distant mucus membranes following vaccination at one mucosal surface has been seen in humans as well, it’s still being worked out whether the patterns seen in mice are fully reproduced in humans,” Irvine says. “It might be that it’s a different mucosal surface that gets stimulated from the lungs or from oral delivery in humans.”

Tumor defense
The particles also hold promise for delivering cancer vaccines, which stimulate the body’s own immune system to destroy tumors.

To test this, the researchers first implanted the mice with melanoma tumors that were engineered to express ovalbumin, a protein found in egg whites. Three days later, they vaccinated the mice with ovalbumin. They found that mice given the nanoparticle form of the vaccine completely rejected the tumors, while mice given the uncoated vaccine did not.

Further studies need to be done with more challenging tumor models, Irvine says. In the future, tests with vaccines targeted to proteins expressed by cancer cells would be necessary.

The research was funded by the National Cancer Institute, the Ragon Institute, the Bill and Melinda Gates Foundation, the U.S. Department of Defense and the National Institutes of Health.

The nanoparticle technology has been patented and licensed to a company called Vedantra, which is now developing infectious-disease and cancer vaccines.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!