Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cell-Detection System Promising for Medical Research, Diagnostics

Published: Thursday, October 03, 2013
Last Updated: Thursday, October 03, 2013
Bookmark and Share
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.

While other researchers have used magnetic beads for similar applications, the new “high-throughput" system has the ability to quickly process and analyze large volumes of blood or other fluids, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

He is working with oncologists at the Indiana University School of Medicine to further develop the technology, which recently was highlighted in the journal Lab on a Chip.

The approach combines two techniques: immunomagnetic separation and microfluidics. In immunomagnetic separation, magnetic beads about a micron in diameter are "functionalized," or coated with antibodies that recognize and attach to antigens on the surface of target cells.

The researchers functionalized the beads to recognize breast cancer and lung cancer cells in laboratory cultures.

"We were able to detect cancer cells with up to a 90 percent yield," said Savran, working with Purdue postdoctoral fellow Chun-Li Chang and medical researchers Shadia Jalal and Daniela E. Matei from the IU School of Medicine's Department of Medicine. "We expect this system to be useful in a wide variety of settings, including detection of rare cells for clinical applications."

Previous systems using immunomagnetic separation to isolate cells required that the cells then be transferred to another system to be identified, counted and studied.

"What's new here is that we've built a system that can perform all of these steps on one chip," said Savran, also an associate professor of biomedical engineering. "It both separates cells and also places them on a chip surface so you can count them and study them with a microscope."

Another innovation is the fast processing, he said. Other "microfluidic" chips are unable to quickly process large volumes of fluid because they rely on extremely narrow channels, which restrict fluid flow.

"The circulating cancer cells are difficult to detect because very few of them are contained in blood," Savran said. "That means you have to use as many magnetic beads as practically possible to quickly screen and process a relatively large sample, or you won't find these cells."

The new design passes the fluid through a chamber that allows for faster flow; a standard 7.5-milliliter fluid sample can run through the system in a matter of minutes.

The Purdue portion of the research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

The beads are directed by a magnetic field to a silicon mesh containing holes 8 microns in diameter. Because the target cells are so sparse, many of the beads fail to attract any and pass through the silicon mesh. The beads that have attached to cells are too large to pass through the holes in the mesh.

If needed, the cells can quickly be flushed from the system for further analysis simply by turning off the magnetic field.

"Not only can the cells be readily retrieved for further usage, the chip can be re-used for subsequent experiments," Savran said.

The technology also could be used to cull other types of cells.

"This is not only for cancer applications," he said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Remote-Controlled Drug Delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.
Thursday, June 25, 2015
Microsecond Raman Imaging Might Probe Cells, Organs for Disease
An advanced medical diagnostic tool for the early detection of cancer and other diseases.
Thursday, April 02, 2015
Purdue-Based Firms Grow After Receiving Emerging Innovations Fund Investments
The Fund has helped to support new business ventures across a range of research areas.
Friday, March 13, 2015
Keck Foundation to Fund Purdue Research into Spectroscopic Imaging
Ji-Xin Cheng leads a Purdue team awarded a $1 million W.M. Keck Foundation grant to develop a new type of imaging technology for cell and tissue analysis that could bring advanced medical diagnostics.
Tuesday, February 10, 2015
Pharmaceuticals, Personal Care Products Could Taint Swimming Pools
A new study suggests pharmaceuticals and chemicals from personal care products end up in swimming pools, possibly interacting with chlorine to produce disinfection byproducts with unknown properties and health effects.
Monday, January 12, 2015
Purdue Research Suggests Approach to Treat Virus Causing Respiratory Illness
Enterovirus D68 has stricken children with serious respiratory infections.
Monday, January 05, 2015
Drinking Water Odors, Chemicals Above Health Standards Caused by 'Green Building' Plumbing
Several types of plastic pipes in eco-friendly green buildings in the United States have been found to leach chemicals into drinking water that can cause odors and sometimes exist at levels that may exceed health standards.
Tuesday, October 21, 2014
New Technique Yields Drug, Biomedical Test Results in One Minute
Slug flow microextraction makes it possible to quickly detect the presence of drugs or to monitor certain medical conditions using only a single drop of blood or urine.
Tuesday, October 14, 2014
Producing Orange Corn Rich in Provitamin A
Improvement of carotenoid levels in corn a simpler, faster process for plant breeders.
Saturday, October 11, 2014
New Chip Promising For Tumor-Targeting Research
The new system, called a tumor-microenvironment-on-chip device, will allow researchers to study the complex environment surrounding tumors and the barriers that prevent the targeted delivery of therapeutic agents.
Tuesday, September 23, 2014
Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
System 'Prints' Precise, Tailored Drug Dosages
The new approach uses a combination of data and mathematics to determine the precise dosage.
Friday, May 16, 2014
Purdue, Houston Methodist to Take Drug Discoveries from the Bench Top to the Bedside
The planned collaboration on research and educational initiatives includes clinical trials of drugs developed at Purdue.
Monday, March 17, 2014
Helping Genes Get Out of the Starting Blocks Faster
Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue study shows.
Friday, February 21, 2014
Laser Tool Speeds up Detection of Salmonella in Food Products
Purdue University researchers have developed a laser sensor that can identify Salmonella bacteria grown from food samples about three times faster than conventional detection methods.
Sunday, February 16, 2014
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos