Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Kind of Microscope uses Neutrons

Published: Friday, October 04, 2013
Last Updated: Friday, October 04, 2013
Bookmark and Share
Device could open up new areas of research on materials and biological samples at tiny scales.

Researchers at MIT, working with partners at NASA, have developed a new concept for a microscope that would use neutrons — subatomic particles with no electrical charge — instead of beams of light or electrons to create high-resolution images.

Among other features, neutron-based instruments have the ability to probe inside metal objects — such as fuel cells, batteries, and engines, even when in use — to learn details of their internal structure. Neutron instruments are also uniquely sensitive to magnetic properties and to lighter elements that are important in biological materials.

The new concept has been outlined in a series of research papers this year, including one published this week in Nature Communications by MIT postdoc Dazhi Liu, research scientist Boris Khaykovich, professor David Moncton, and four others.

Moncton, an adjunct professor of physics and director of MIT’s Nuclear Reactor Laboratory, says that Khaykovich first proposed the idea of adapting a 60-year-old concept for a way of focusing X-rays using mirrors to the challenge of building a high-performing neutron microscope. Until now, most neutron instruments have been akin to pinhole cameras: crude imaging systems that simply let light through a tiny opening. Without efficient optical components, such devices produce weak images with poor resolution.

Beyond the pinhole

“For neutrons, there have been no high-quality focusing devices,” Moncton says. “Essentially all of the neutron instruments developed over a half-century are effectively pinhole cameras.” But with this new advance, he says, “We are turning the field of neutron imaging from the era of pinhole cameras to an era of genuine optics.”

“The new mirror device acts like the image-forming lens of an optical microscope,” Liu adds.

Because neutrons interact only minimally with matter, it’s difficult to focus beams of them to create a telescope or microscope. But a basic concept was proposed, for X-rays, by Hans Wolter in 1952 and later developed, under the auspices of NASA, for telescopes such as the orbiting Chandra X-ray Observatory (which was designed and is managed by scientists at MIT). Neutron beams interact weakly, much like X-rays, and can be focused by a similar optical system.

It’s well known that light can be reflected by normally nonreflective surfaces, so long as it strikes that surface at a shallow angle; this is the basic physics of a desert mirage. Using the same principle, mirrors with certain coatings can reflect neutrons at shallow angles.

A sharper, smaller device

The actual instrument uses several reflective cylinders nested one inside the other, so as to increase the surface area available for reflection. The resulting device could improve the performance of existing neutron imaging systems by a factor of about 50, the researchers say — allowing for much sharper images, much smaller instruments, or both.

The team initially designed and optimized the concept digitally, then fabricated a small test instrument as a proof-of-principle and demonstrated its performance using a neutron beam facility at MIT’s Nuclear Reactor Laboratory. Later work, requiring a different spectrum of neutron energies, was carried out at Oak Ridge National Laboratory (ORNL) and at the National Institute of Standards and Technology (NIST).

Such a new instrument could be used to observe and characterize many kinds of materials and biological samples; other nonimaging methods that exploit the scattering of neutrons might benefit as well. Because the neutron beams are relatively low-energy, they are “a much more sensitive scattering probe,” Moncton says, for phenomena such as “how atoms or magnetic moments move in a material.”

The researchers next plan to build an optimized neutron-microscopy system in collaboration with NIST, which already has a major neutron-beam research facility. This new instrument is expected to cost a few million dollars.

Moncton points out that a recent major advance in the field was the construction of a $1.4 billion facility that provides a tenfold increase in neutron flux. “Given the cost of producing the neutron beams, it is essential to equip them with the most efficient optics possible,” he says.

Roger Pynn, a materials scientist at the University of California at Santa Barbara who was not involved in this research, says, “I expect it to lead to a number of breakthroughs in neutron imaging. … It offers the potential for some really new applications of neutron scattering — something that we haven’t seen for quite a while.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Flu Vaccine May Reduce Risk of Death For Type 2 Diabetes Patients
Researchers at Imperial College London have suggested that the vaccine may have substantial benefits for patients with long-term conditions.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be pair with a precision therapy.
Porphyrins as Catalysts in Scalable Organic Reactions
This review covers the most relevant scalable porphyrin-catalysed procedures, showing how these compounds represent broad applications in chemistry.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!