Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Analysis of Little-Explored Regions of Genome Reveals Dozens of Cancer Triggers

Published: Friday, October 04, 2013
Last Updated: Friday, October 04, 2013
Bookmark and Share
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer.

The newly discovered mutations are in regions of DNA that do not code for proteins but instead influence activity of other genes. These areas represent an unexplored world that will allow researchers and doctors to gain new insight into the causes and treatment of cancer, said the scientists.

“This allows us to take a systematic approach to cancer genomics,” said Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics and co-senior author of the paper, which appears in the Oct. 4 issue of Science. “Now we do not need to limit ourselves to the roughly 1% of the genome that codes for proteins but can explore the rest of our DNA.”

The analysis — led by Yale researchers and including scientists from the Wellcome Trust Sanger Institute, Cornell University, and other institutions — is a statistical marriage of separate mammoth research projects, each providing groundbreaking insights in our genome, the genetic blueprint of life.

The 1000 Genomes project is compiling the personal genomes of many individuals. The data help pinpoint regions of DNA that vary little within the population and thus are of crucial importance to human health. The Encyclopedia of DNA Elements (ENCODE) project is working toward cataloguing the function of each location in the human genome.

The team took non-coding DNA elements from ENCODE project and looked for those that are highly conserved in the 1000 Genomes data. They then contrasted the data with mutations in tumor samples from about 90 patients with breast or prostate cancer. They found dozens in areas of DNA that vary little and therefore are likely to drive tumor progression. They also looked for additional features of the cancer mutations such as their proximity to regulatory-network hubs, which also indicate they may be particularly damaging.

While the research focused on variants of single base pairs, many of conclusions also apply to other, larger forms of genetic variation, the authors say.

The great diversity of variants found proves that massive data projects have direct relevance to cancer in individuals, the authors said.

“Our approach can be directly used in the context of precision medicine,” says Ekta Khurana, an associate research scientist in Gerstein’s lab and a first author of the study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reduced Immune Response Causes Flu Deaths in Older Adults
Yale study suggests that immune response to flu causes death in older people, not the virus.
Friday, April 22, 2016
CNS Inflammation: A Pathway and Possible Drug Target
Scientists have long known that the central nervous system (CNS) has a remarkable ability to limit excessive inflammation in the presence of antigens or injury, but how it works has been unclear.
Tuesday, April 12, 2016
Nanogel That Delivers One-Two Punch To Cancer Heads To Clinical Trial
Yale scientists create a nanogel which can be used to deliver multiple drugs to cancer cells.
Wednesday, April 06, 2016
Chaos, Hope, And The Lupus Butterfly Theory
The lupus butterfly theory suggests that antibodies that attack DNA in lupus may be sources of both chaos and hope.
Wednesday, April 06, 2016
Life-Extending Hormone Bolsters Immunity
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers.
Wednesday, January 13, 2016
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Thursday, August 27, 2015
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
Thursday, August 20, 2015
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Yale Team finds why BRCA Gene Resists Cancer Treatment
The University researchers have discovered why a key molecular assistant is crucial to the function of the BRCA2 gene.
Tuesday, July 07, 2015
New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
Scientific News
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
Experimental Drug Cancels Effect from Key Intellectual Disability Gene
A University of Wisconsin—Madison researcher who studies the most common genetic intellectual disability has used an experimental drug to reverse — in mice — damage from the mutation that causes the syndrome.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Bioreactors Ready for the Big Time
Bioreactors are passive filtration systems that can reduce nitrate losses from farm fields.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Common Class of Cancer Drugs May Not Lead to Cognitive Decline
UCLA study refutes 2015 research suggesting anthracyclines could cause memory loss, other impairments.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!