Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Investigating Protein Targets and Cellular Pathways in Yeasts

Published: Monday, October 07, 2013
Last Updated: Monday, October 07, 2013
Bookmark and Share
Scientists at the Donnelly Centre for Cellular and Biomolecular Research have chosen generations of Tecan microplate readers to monitor the effects of environmental or drug perturbation on molecularly barcoded yeasts.

The Donnelly Centre for Cellular and Biomolecular Research, based at the University of Toronto, Canada, is an interdisciplinary research institute that houses scientists from a wide variety of backgrounds, integrating the fields of biology, computer science, engineering and chemistry, as well as leading areas of biomedical research. Corey Nislow, Associate Professor at the Donnelly Centre’s Banting and Best Department of Medical Research (BBDMR) faculty, explained: “The Donnelly Centre houses faculty from many different departments, adopting a multidisciplinary approach to experimental studies with the intention of cross-pollinating between bioinformaticians, genomic and proteomic scientists. My own laboratory, and the laboratory of my collaborator Dr Guri Giaever, is responsible for running a next generation chemogenomics facility, and our work involves monitoring the growth of large pools of molecularly barcoded yeast, simultaneously screening 6,000 different mutants. The presence of a unique mutant barcode identifier enables us to distinguish each one of the mutants and deconvolute a complex sample pool at the end of an experiment. This simplifies the procedure, allowing the pool to be treated as a simple culture and challenged with different environmental or drug perturbations.” 

Corey continued: “Guri, Michael Proctor (a research scientist working at Stanford University at the time) and myself  first developed a workstation for this work in 2000, consisting of four Tecan GENios™ microplate readers to monitor the growth of the culture, integrated with a Perkin Elmer multiprobe. The basic principle is the same for this and the second generation system we later created using Tecan’s Safire™ reader and Freedom EVO® 200 liquid handling workstation. Based on a predetermined parameter, the liquid handler samples and reinoculates the culture, keeping it in logarithmic phase for up to 100 generations and allowing subtle effects on different mutants to be investigated. Initially, the liquid handler moves some of the culture to fresh media and, at the time of transfer, saves a sample so that the abundance of each strain can be decoded at the end of the experiment by microarray hybridization or next generation sequencing. The readers monitor both optical density and fluorescence – 95 % of the time we monitor optical density, but occasionally we study the readout from a fluorescent reporter – and each well of each plate is independently monitored. Essentially, we chart the abundance of every strain under a particular condition and, based on the abundance of the different mutants, infer the particular protein targets or cellular pathways that are important for culture survival under those circumstances. In the absence of these protein targets or cellular pathways, the culture is sensitive to that particular condition.” 

“For the first system we chose the GENios reader because it was the only instrument at the time that had a sufficient orbit to keep yeast cells well suspended and that could maintain temperature without condensation. However, although this system is still in use, the workflow means that the readers are effectively serving as shaking incubators, operating 24 hours a day, and shaking and reading at 15 minute interviews. The process of ejecting each plate to allow the liquid handler to sample the culture and return the plate takes a minute each time and is very much a rate-limiting step. In contrast, the second generation screening system is equipped with six shaking incubators, and the Safire microplate reader is just used to read! The speed of the Safire reader allows six to eight plates to be accommodated without any additional waiting time, and we can now interrogate model organisms that require light, such as the model algae Chlamydomonas; this would previously have been impossible in the dark of the reader. In addition, using dedicated shaking incubators has enabled us to increase capacity.”

“We didn’t just ‘settle on’ Tecan, we purposely selected the Company, and so did all of our collaborators, who loved the growth curves they saw from our work. Every time we ran large screens we needed to confirm individual strains, and that required a server rack full of readers. We have remained with Tecan and, between our Stanford site and Toronto, have 24 GENios systems, which are all still running! The flexibility of the Tecan systems is a big advantage, particularly the smooth information transfer.”

“As well as increasing throughput, our Tecan instruments have given us new avenues of exploration. We are now focusing on data collection and the introduction of new organisms, developing simple barcoding strategies for other organisms and investigating E. coli strains associated with Crohn’s Disease. We also plan to study more model organism genomes, de novo genomes, and will be doing a lot of next generation sequencing library preparation. In the future, we plan a third generation system, with two new generation Tecan readers and twelve shaking incubators, which will further increase our capabilities,” concluded Corey.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Phenomenex,Tecan Partner
Phenomenex, Inc. and the Tecan Group has announced a collaboration to co-market automated solid phase extraction (SPE) sample preparation solutions.
Wednesday, September 09, 2015
Too Gracious a Host
Scientists at the University of Toronto are using Tecan’s Infinite M200 PRO and Gas Control Module to study host-pathogen interactions for Legionella bacteria.
Monday, October 07, 2013
Reprogramming Nature
Researchers in the Synthetic Biology Center at the Massachusetts Institute of Technology are using a Freedom EVO® workstation to aid the development of genetic circuits.
Monday, October 07, 2013
A Watchful Eye on Biosecurity
Intended for government laboratory and pharmaceutical screening applications, BioSentinel now recommends the Infinite F500 to all its customers.
Monday, October 07, 2013
The Tecan-Fudan University Demo Lab opens in Shanghai
Tecan and Fudan University in Shanghai have joined forces to open a demonstration laboratory in the University’s School of Pharmacy.
Monday, June 24, 2013
Tecan Shows Ongoing Commitment to Clinical and Research Markets in China
Key opinion leaders from major hospital clinical laboratories in China recently visited Tecan’s European research and development centers.
Monday, June 24, 2013
Joining the Digital Age
TES Pharma has recently purchased an HP D300 Digital Dispenser, and is now reaping the benefits of direct titration with improved assay reproducibility and more time to perform exploratory research.
Thursday, February 21, 2013
Boston Plays Host to the Fifth Tecan Symposium
This year’s symposium explored the topic of ‘Mass spectrometry - the expanding role in life sciences and diagnostics.’
Wednesday, December 12, 2012
Tecan and Reinnervate Team up for Automation of 3D Cell Culture
Alvetex Scaffold for the automation of 3D cell culture.
Tuesday, June 26, 2012
Tecan Collaborates with China to Embrace a Whole New Dimension in Blood Safety
Tecan is working with the Chinese Society of Blood Transfusion in a bid to steadily improve both the capabilities and the quality of blood screening services.
Tuesday, May 22, 2012
Tecan and Attana Extend Distribution Agreement
Tecan to distribute Attana's label-free biosensor instruments and QCM assay technology in Europe.
Friday, October 14, 2011
Tecan and Covaris co-market Freedom EVO® with Adaptive Focused Acoustics™
The joint offering will be available to customers for sample preparation, compound management and next generation sequencing applications.
Friday, November 19, 2010
Tecan Group and Luminex Corporation Partner to Develop Automated Newborn Screening Solution
New solution combines multiplexing and automation technologies to create novel system for newborn screening laboratories.
Friday, October 15, 2010
Tecan Automated Solutions Accelerate Crop Improvement
University of Kiel scientists use Tecan Freedom EVO® for the development of TILLING® programs for rape seed and sugar beet.
Friday, July 16, 2010
Tecan Provides Automated Solutions for Molecular Pharmacology
Leibniz-Institut uses Tecan’s Freedom EVO® workstations for systematic high throughput screening of bioactive small molecule libraries.
Tuesday, July 06, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos