Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mass Producing Pocket Labs

Published: Monday, October 07, 2013
Last Updated: Monday, October 07, 2013
Bookmark and Share
There is certainly no shortage of lab-on-a-chip devices, but in most cases manufacturers have not yet found a cost-effective way to mass produce them.

Scientists are now developing a platform for series production of these pocket laboratories. 

Ask anyone to imagine what a chemical analysis laboratory looks like, and most will picture the following scene: a large room filled with electrical equipment, extractor hoods and chemical substances, in which white-robed researchers are busy unlocking the secrets behind all sorts of scientific processes. But there are also laboratories of a very different kind, for instance labs-on-a-chip (LOCs). These “pocket labs” are able to automatically perform a complete analysis of even the tiniest liquid samples, integrating all the required functions onto a chip that’s just a few centimeters long. Experts all over the world have developed many powerful LOC devices in recent years, but very few pocket labs have made it onto the market.

Scientists at the Fraunhofer Institute for Production Technology IPT in Aachen want to find out why so many LOCs are not a commercial success. They are working with colleagues from polyscale GmbH & Co. KG, an IPT spin-off, and ten other industrial partners from Germany, Finland, Spain, the United Kingdom, France and Italy on ways to make LOCs marketable. Their ML² project is funded by the EU’s Seventh Framework Programme (FP7), which is providing a total of 7.69 million euros in funding through fall 2016. “One of the main reasons LOCs don’t make it to market is that the technologies used to fabricate them are often not transferrable to industrial-scale production,” says Christoph Baum, group manager at the IPT. What’s more, it is far from easy to integrate electrical functions into pocket labs, and of the approaches taken to date, none has yet proved suitable for mass production.

Platform for series production

The ML² project aims to completely revise the way pocket labs are made so they are more suited to series production. “Our objective is to create a design and production platform that will enable us to manufacture all the components we need,” says Baum. This includes producing the tiny channel structures within which liquids flow and react with each other, and coating the surfaces so that bioactive substances can bond with them. Then there are optical components, and electrical circuits for heating the channels, for example. The experts apply each of these components to individual films that are then assembled to form the complete “laboratory”. The films are connected to one another via vertical channels machined through the individual layers using a laser.

The first step the researchers have taken is to adapt and modify the manufacturing process for each layer to suit mass-production requirements. When it comes to creating the channel structures, the team has moved away from the usual injection molding or wet chemical processing techniques in favor of roll-to-roll processing. This involves transferring the negative imprint of the channels onto a roller to create an embossing cylinder that then imprints a pattern of depressions on a continuous roll of film. The electrical circuits are printed onto film with an inkjet printer using special ink that contains copper or silver nanoparticles.

Each manufacturing stage is fine-tuned by the researchers in the process of producing a number of demonstrator LOCs – for instance a pregnancy test with a digital display. These tests are currently produced in low-wage countries, but with increased automation set to slash manufacturing costs by up to 50 percent in future, production would once again be commercially viable in a high-wage country such as Germany. The team aims to have all the demonstrators built and the individual manufacturing processes optimized by 2014. Then it will be a case of fitting the various steps in the manufacturing process together, making sure they match up, and implementing the entire sequence on an industrial scale.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
Tuesday, May 03, 2016
Growing Stem Cells Faster on Seaweed
Fraunhofer scientists use the gel-like mass from Chilean seaweed as the substrate for stem cells.
Thursday, December 03, 2015
Mini Synthetic Organism Instead Of Test Animals
Using a compact multi-organ chip, and those of three separate microcircuits, researchers can study the regeneration of certain kidney cells.
Thursday, February 05, 2015
A Medical Lab For The Home
Fraunhofer FIT demonstrates a mobile wireless system that monitors the health of elderly people in their own homes, using miniature sensors.
Wednesday, November 05, 2014
Australia Health Care Company Prima Biomed Ltd Enters Agreement with Fraunhofer Institute for Cell Therapy and Immunology
The agreement represents a crucial step in the development and production of CVac™ in Europe. Establishment of a subsidiary in Leipzig is envisioned.
Wednesday, June 02, 2010
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!