Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Exploring Bacteria-Destroying Proteins for More Efficient Antibiotics

Published: Wednesday, October 09, 2013
Last Updated: Wednesday, October 09, 2013
Bookmark and Share
The studies offer a potential move towards a new generation of antibiotic treatment that is less prone to bacterial resistance.

A research team, led by the National Physical Laboratory (NPL), has carried out studies into how protein fragments found in our bodies destroy harmful bacteria .

The protein fragments, known as antimicrobial peptides, have fought bacteria in the human body for thousands of years by identifying and disrupting the structure of the bacterial membrane. But little is still known about the precise mechanisms they use to carry out this process. The NPL-led team conducted two separate studies to better understand the process and help assess the feasibility of using human antimicrobial peptides as the basis of new treatments.

The first study used de novo protein design and nanoscale imaging techniques, Atomic Force Microscopy and high resolution Mass Spectrometry, together with computer simulations. This combination, never used before for this application, allowed the scientists to study how the peptides destroy the bacteria on a molecular level.

The research, reported in PNAS, revealed that the peptides form nanoscale pores in the bacterial membranes, which subsequently expand until the membrane completely disintegrates. In targeting the membrane, a heterogeneous structure composed predominantly of proteins and lipids, it is thought that the peptides reduce the likelihood that bacteria will develop resistance. This is because many genes would need to mutate simultaneously in order to do so – a very unlikely scenario. 

However, before they are considered for medical use, it is important that scientists understand the likelihood of bacteria becoming resistant to the peptides. A second NPL-led study looked to do just that, using a combination of measurements, imaging and molecular dynamics simulations. It explored whether and how bacteria could develop resistance to these antibiotic peptides as they have to conventional antibiotics like methicillin.  

The findings, reported in the Journal of Biological Chemistry, suggest that antagonistic peptide chains secreted by bacterial cells or expressed on their surfaces may cause efficient anti-antimicrobial responses, meaning that bacteria could potentially thrive in the presence of the peptides. This discovery may give scientists a better understanding of bacterial resistance and help them choose the right approach when developing the peptides for medical use.

Dr. Max Ryadnov, who leads NPL's  scientific research in Biotechnology, said: “It is widely known that these antimicrobial peptides are very efficient at destroying bacteria, but previous measurement techniques only let us see to a detail of five nanometres. The unique combination of technologies used in this research allowed us to see the process at larger length scales and in finer detail. The implications of these research efforts could be considerable - potentially paving the way for an alternative to the current, increasingly inefficient, antibiotic treatments, but also helping us understand the potential vulnerabilities of therapeutics based on these peptides.”

The research was led by NPL and featured scientists from the London Centre for Nanotechnology, UCL, University of Edinburgh, University of Bristol, University of Oxford, Freie Universität Berlin and IBM.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Blend Synthetic Air to Measure Climate Change
Scientists at the NPL have produced a synthetic air reference standard which can be used to accurately measure levels of carbon dioxide and methane in the atmosphere.
Wednesday, February 26, 2014
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!