Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wheat Defence Against Septoria: Two Genes in the Front Line

Published: Monday, October 14, 2013
Last Updated: Monday, October 14, 2013
Bookmark and Share
Scientists at Rothamsted Research have identified two genes in wheat crucial to resisting infection by the disease Septoria leaf blotch.

Wheat is the most important UK crop with an annual value of about £1.2 Bn.
One of the most economically important diseases of wheat is Septoria leaf blotch, also known as Septoria tritici blotch (STB). The disease is caused by the fungus Mycosphaerella graminicola (Mg) and it is a major threat to crop yields in the UK and worldwide.

Rothamsted researchers have previously identified a fungal gene that is critical in evading wheat immune responses early during disease establishment.

Now, using modern biotechnology methods two wheat genes have been identified whose functions are to activate the wheat defence response. This finding can pave the road for developing molecular approaches to combat the disease in the future. The study has been published in the journal Molecular Plant-Microbe Interactions.

When pathogens attack wheat plant leaves they release signals that the plants have evolved to recognise and subsequently initiate a response within the leaf cells to protect themselves against the pathogen. However, pathogens are successful in evading the immune response of the host plant because they have also evolved other signals that are able to suppress the first layer of plant defence, often making themselves "invisible". The most commonly known and studied fungal signal that both plants and animals can recognise is chitin, which is a major component of fungal cell walls. In some plants, like Arabidopsis, just one gene that codes for the protein Chitin Elicitor Receptor Kinase 1 (CERK1) is sufficient for recognition of fungal chitin and initiation of defence responses. In other plants, e.g. rice, not only CERK1 but also another gene encoding a different protein, Chitin Elicitor Binding Protein (CEBiP), are required. Despite the fact that wheat is a major crop in the UK and STB a highly prevalent disease, very little was known about the mechanism that wheat may have evolved to recognise the invading fungus. This study demonstrates that wheat is more like rice, having a two gene system for recognition of fungal chitin and elicitation of the immune response. Moreover, these genes are capable of conferring resistance against STB in the absence of the interfering fungal gene.

Dr Kostya Kanyuka, lead researcher at Rothamsted said: "We are very excited about the findings of this study. To identify the exact role of the two candidate wheat genes we had to temporarily inhibit their function (i.e. silence) and investigate whether the pathogens can be successful or not in causing disease in the silenced plants. Virus-induced gene silencing (VIGS) is a powerful method used in plant science for inhibiting plant gene function for a short period of time. In this study we demonstrate that gene silencing using this method can also have long lasting effects, thus allowing the study of plant-pathogen interactions that have a long symptomless infection phase, like Mycosphaerella graminicola in wheat".

Professor Kim Hammond-Kosack of Rothamsted Research said: "There is a long symptomless infection phase of between 7 to 14 days, which is followed by rapid deterioration of the leaf tissue. This life cycle of the disease makes it difficult to identify and apply curative control methods before it is too late for the crop. Having identified the molecules that are involved in this interaction in wheat we can now think of different ways that we can develop to detect the presence of the pathogen and to stop symptoms arising before the effect of the disease on crop performance, final grain yield and final grain quality is too costly for the farmers".

Dr Jason Rudd of Rothamsted said: "This work has identified two genes that are already present in wheat which are perfectly able to provide resistance against STB. The remaining problem, and the reason why they currently don't do this in the field, resides in the fact that the fungus contains a single gene that prevents the two wheat genes from functioning. On this basis it is extraordinary that only three genes in total (two from wheat and one from the fungus) can decide the outcome of the interaction. Their identification opens the way to future biotechnological approaches that could be used to either enhance (for wheat genes) or inhibit (for the pathogen gene) their functions to favour the disease-free plant."

In addition, Professor Kim Hammond-Kosack of Rothamsted Research said: "A closely related fungus Mycosphaerella fijiensis causes the globally important Black Sigatoka disease that can devastate banana plantations in just a few months. The similarity between the wheat and the banana pathogen's mode of leaf infection suggests that this new knowledge on wheat defence could have potential application in the protection of banana crops".


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Drugs Used to Treat Lung Disease Work With the Body Clock
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective.
Thursday, August 14, 2014
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
UK Diet and Health Research Awarded £4M
Funding awarded to six projects investigating diet and health to enable the food and drink industry to meet the needs of UK consumers.
Wednesday, June 25, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Investment Provides Access to the World’s Most Advanced Crystallography Technology
The UK community will benefit thanks to a £5.64M investment from UK research funders.
Tuesday, June 03, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
Protective Proteins Reduce Damage to Blood Vessels
Proteins found blood have been shown to reduce damage caused to blood vessels as we age, and in conditions such as atherosclerosis and arthritis.
Thursday, May 22, 2014
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!